

Microsoft Dynamics
®

 AX

Best Practices for Microsoft Dynamics

AX 2009 Development

White Paper

Date: April 16, 2010

2

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Table of Contents

Best Practices for Microsoft Dynamics AX Development.............................. 3

Top Best Practices to Consider .. 3

General Best Practice Guidance ... 3

Best Practice Compiler Enforced Checks ... 8

List of Best Practice Error and Warning Messages... 8

New Best Practices in Microsoft Dynamics AX 2009 ... 36

New Best Practices in Microsoft Dynamics AX 4.0 .. 37

Setting Up Best Practices Checks .. 38

Best Practice Compiler Checks for Application Objects ... 42

X++ Coding Standards ... 106

X++ Layout ... 106

X++ Standards: Comments ... 108

X++ Standards: Using Semicolons .. 109

X++ Standards: Constants .. 109

X++ Standards: Arrays ... 111

X++ Standards: Dates .. 112

X++ Standards: try/catch Statements ... 113

X++ Standards: throw Statements ... 113

X++ Standards: ttsBegin and ttsCommit ... 113

X++ Standards: if ... else and switch Statements ... 113

X++ Standards: select Statements ... 115

Intrinsic Functions .. 116

Clear Code Examples... 118

Dead Code Examples ... 119

Best Practices: XML Documentation .. 120

Best Practices: Avoiding Potential Security Issues ... 123

Naming Conventions .. 124

General Rules ... 124

Best Practices for Labels .. 125

Naming Conventions: Name Structure ... 126

Use of Uppercase and Lowercase .. 127

Naming Conventions: Underscores .. 127

Naming Conventions: Abbreviations .. 128

Naming conventions: Prefixes .. 128

Automatically Generated Names ... 129

Naming Conventions for Variables ... 129

Naming Conventions for License Codes .. 129

Designing a Microsoft Dynamics AX Application .. 130

Data Model for New Microsoft Dynamics AX Modules ... 130

Modify Objects in the Standard Application .. 132

Modifying User Interface Text ... 133

Design Principles .. 134

Best Practices: Performance Optimizations ... 138

Design Guidelines for Cost-Efficient Upgrades ... 143

APIs in the Standard Application ... 146

Frameworks Introduction ... 148

3

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practices for Microsoft Dynamics AX Development

When using the Microsoft Dynamics AX development environment, you should adhere to a

set of best practices. The X++ compiler checks the code for best practice issues. These

issues can result in best practice errors, warnings, or informational messages.

This guide covers Microsoft Dynamics AX application development best practices. They are

recommended for any partner or end user who is enhancing or customizing Microsoft

Dynamics AX.

These best practices apply to the following:

 Programming in the standard application

 Certified solutions

Microsoft Dynamics AX includes tools for checking best practices. Best practices that can be

checked in this way are marked with the following symbols:







Top Best Practices to Consider

The following sections provide guidance to avoid best practice violations. The sections

provide guidance in the following areas:

General Best Practice Guidance

The following list provides general best practices guidance.

 Favor using positive logic.

 Use constants instead of numeric literals.

 Use enumerations in place of constants.

 Use explicit access modifiers.

 Do not use method parameters as an l-value.

Formatting Guidance

The following table provides formatting best practice guidance.

Best Practice Example

Include a separating semicolon between

the declarations and code.

int I;
;

Include a blank line after the separating

semicolon.

int I;
;

I = 2;

Place the opening brace at the beginning

of the next line.

if (someExpression)
{
 doSomething();
}

Align the closing brace with the

corresponding opening brace.

if (someExpression)
{
 doSomething();
}

Place the opening and closing braces each

on their own line.

if (someExpression)
{
 doSomething();
}

4

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practice Example

Do not omit braces. Braces are not

optional because they increase code

readability and maintainability. They

should be included, even for single

statement blocks.

if (someExpression)
{
 doSomething();
}

Omit braces for switch statements. These

braces can be omitted because the case

and break statements clearly indicate the

beginning and ending.

case 0:
 doSomething();
 break;

Use a single space in the following cases:

 On either side of the assignment

operator.

Correct: cust.Name = "Jo";

Incorrect: cust.Name="Jo";

 After the comma between

parameters.

Correct:
public void doSomething(int _x, int _y)

Incorrect:
public void doSomething(int _x,int _y)

 Between arguments. Correct: myAddress(myStr, 0, 1)

Incorrect: myAddress(myStr,0,1)

 Before flow control statements. Correct: while (x == y)

Incorrect: while(x == y)

 Before and after binary operators. Correct: if (x == y)

Incorrect: if (x==y)

 After the semicolon between the parts

of a for statement.

Correct: for (i = 0; i < 10; i++)

Incorrect: for (i = 0;i < 10;i++)

Do not use any spaces in the following

cases:

 After the opening or before the

closing parenthesis.

Correct: myAddress(myStr, 0, 1)

Incorrect: myAddress(myStr, 0, 1)

 Between a member name and

opening parenthesis.

Correct: myAddress()

Incorrect: myAddress ()

 Before or after the brackets. Correct: x = dataArray[index];

Incorrect: x = dataArray[index];

 Before or after unary operators. Correct: if (!y)

Incorrect: if (! y)

Use four spaces as the standard indent.

The tab key in code editor inserts four

spaces. Indent in the following cases:

 The contents of code blocks.

if (someExpression)
{
 doSomething();
}

 Case blocks even though they do not

use braces.

switch (someExpression)
{
 case 0:
 doSomething();
 break;
 …
}

 A wrapped line one indent from the

previous line.

lastAccount = this.doSomething(
 cust,
 firstAccount,
 startDate,
 endDate);

Wrap lines that get too long to fit on a

single line.

Wrap shorter lines to improve clarity.

Place each wrapped select and while select firstonly cust

5

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practice Example

select statement keyword at the

beginning of a new line. The content

associated with each keyword should be

indented by one indent under the

corresponding keyword.

 where someExpression1
 && someExpression2
 && someExpression3;

select count(RecId)
 from cust
 where someExpression1
 && someExpression2
 && someExpression3;

while select firstonly cust
 order by Name, AccountNum
 where someExpression1
 && someExpression2
 && someExpression3
{
 …
}

Do not use more or less than four spaces

to force special alignment.

Right
lastAccount = this.doSomething(
 cust,
 firstAccount,
 startDate,
 endDate);

Wrong (indent is 14 spaces)
last = this.do(
 cust,
 firstAccount,
 startDate,
 endDate);

Put each indented parameter or argument

on a separate line.

Use switch statements over consecutive if

statements.

Do not use parenthesis around the value

of the cases of a switch statement.

Do not put the closing parenthesis for a

method call on a new line.

Naming Guidance

The following table provides naming best practice guidance.

Best Practice Example

Use Camel case naming for member

variables, method names, and local

variables.

serverClass;

Use Pascal case naming for Application

Object Tree (AOT) elements.

AddressCountyRegion;

Prefix parameter names with an

underscore (_).

myJob(Args _args)

Do not use Hungarian notation. Do not

encode the type of a variable in its name.

Incorrect: strName

Avoid prefixing local variables. Incorrect: stringName or intCount

Use meaningful and self-documenting

names.

6

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Commenting Code Guidance

This section provides best practice guidance for writing code comments. Comments should

be used to describe the intent, algorithmic overview, and logical flow. Provide comments so

that someone other than the original developer could understand the behavior and purpose

of the code. It is a best practice that most code will have comments reflecting the developer

intent and approach for the code. Use comments liberally. Include comments that indicate

who made the changes, when the changes were made, why the changes were added, and

what the changes do. Comments are particularly beneficial when multiple parties are

involved in modifying and maintaining code. The following table provides code commenting

best practice guidance.

Best Practice Example

Do not use comments that repeat the

code.

Do not use multi-line syntax /* … */ for

comments. The single-line syntax // … is
preferred even when a comment spans

multiple lines.

public int getCount()
{
 ;

 // This comment spans multiple
 // lines because it has
 // a lot to say. The use of
 // multi-line syntax is
 // not allowed.
 …
}

Do not place comments at the end of a

line unless the comment is very short. In

most cases, comments should be placed

above the code.

public class ArrayList
{
 int count; // -1 indicates uninitialized
array
}

Remove TODO comments well in advance

of a release.

XML Documentation Guidance

XML documentation should provide information related to usage. It should help a

programmer decide if they want to use the method. The following list provides best practice

guidance for XML documentation.

 Add XML documentation with meaningful content.

 Use XML documentation to provide users and potential users with the information they

need.

 Do not use XML documentation to discuss implementation details or other items not

related to use.

 Do not add XML documentation for the sake of improving code coverage.

 Be aware of the methods with automatically generated XML documentation; for

example, new and construct.

Labels and Text Guidance

The following list provides best practice guidance for labels and text.

 Use labels for text that will appear on the user interface.

7

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 Put labels in double quotes.

 Do not concatenate multiple labels together.

 Use single quotes for text that will not appear in the user interface.

Database Guidance

The following list provides best practice guidance related to the database.

 Include a try catch around all transactions that could result in deadlock.

 Make sure the try for a deadlock is idempotent meaning no matter how many times the

try is attempted, it will yield the same result.

 Consider the clarity when deciding the number of return statements in a method.

 Use throw instead of ttsAbort.

 Avoid display methods where possible.

 Set Optimistic Concurrency Control (OccEnabled) to Yes for most tables.

 Do not include user interaction inside a database transaction.

 Keep database transactions as short as possible.

 Run code on the Application Object Server (AOS) whenever possible.

 Use where clauses in select statements and in queries that align with indexes.

 If method calls are used to test conditions, put the method calls after the other

conditions. If the other conditions fail, then you will not incur the cost of running the

method.

 Minimize the size of database transactions.

 Consider specifying a field list in select statements to increase performance.

 Use firstonly where applicable to increase performance.

 Use aggregates in the selection criteria instead of having the code do the aggregation. If

aggregations are issued in the select statement rather than in code, the processing is

done at the database server which is much more efficient.

 Use table joins instead of nested while loops. Whenever possible use a join in the select

statement rather than using a while loop and then an inner while loop on the related

table. This reduces the amount of communication between the AOS and the database.

 Do not include any sort of user interaction in a transaction.

Exceptions Guidance

The following list provides best practice guidance related to exceptions.

 Throw an exception to stop the currently executing X++ call stack.

 Include a localized error message with all thrown exceptions.

 Use the info, warning, and error functions without a thrown exception in cases where

the executing X++ call stack should not be stopped.

 Use throw with the static helpers on the Error class such as Error::missingParameter and

Error::wrongUseOfFunction for errors targeted at developers.

 Do not throw an exception for an error condition that you expect will need to be caught.

 Do not throw an exception for invalid assumption cases where a Debug::assert is more

appropriate.

See Also

Best Practice Compiler Enforced Checks

X++ Coding Standards

Naming Conventions

Designing a Microsoft Dynamics AX Application

8

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practice Compiler Enforced Checks

When using the Microsoft Dynamics AX development environment, you should adhere to a

set of best practices. The X++ compiler checks the code for best practice issues. These

issues can result in best practice errors, warnings, or informational messages.

In the following topics you will find summaries of the new best practices added for Microsoft

Dynamics AX by release, and how to check your own code and application objects for best

practices.

List of Best Practice Error and Warning Messages

When using the Microsoft Dynamics AX development environment, you should adhere to a

set of best practices. The X++ compiler checks the code for best practice issues. These

issues can result in best practice errors, warnings, or informational messages.

Error and warning messages require changes in the X++ code, but informational messages

do not require any user action. Informational messages are rare and self-explanatory.

The following sections list error and warning messages. The usage of these messages can

vary in Microsoft Dynamics AX. For example, if you cannot find a warning message in the

warning message table, it might be in the error message table. Each table is sorted

alphabetically by the message text. All error and warning messages are shown exactly as

they appear in the code.

Error Messages

The following table lists the best practice error messages. Many error messages are also

discussed in more detail in other Help topics. Where appropriate, the table contains links to

specific locations in other Help topics where messages are discussed in further detail.

Error message text Description BPError code and label

%1 %2 not used Method Variable Not Used, @SYS60464

%1 is an unwanted

object name.

For more

information, see

How to: Add

Rules for

Objects.

Unwanted Object, @SYS85681

%1 property of %2 is not

valid.

Ensure that the

menu item

name assigned

to the form Web

control is valid.

Form Web Control Unknown Menu Item Name,

@SYS93552

Action menu item not

defined

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowNoActionMenuItem,

@SYS108556

Approve outcome must

exist and be enabled

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowApprovalOutcomesInvalid,

@SYS108546

Category not defined For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowTemplateNoCategory,

@SYS108536

9

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

Class name must by

postfixed with %1

For more

information, see

Best Practices

for Interfaces.

Class Name, @SYS87660

Code to handle the

InventDimId field must be

added to the Multisite

Activation Wizard.

For more

information, see

Best Practices:

Table Fields.

BPErrorTableFieldInventDimIdNotMultiSiteActi

vated, @SYS123160

Configuration key must

be provided for a

perspective.

 Perspective Missing Configuration Key,

@SYS94657

Configuration key not

defined

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowNoConfigKey, @SYS108553

Configuration Key with ID

%1 is unknown.

Ensure that

renamed

configuration

keys have not

created a

mismatch

between the

name

referenced and

the current IDs.

Configuration Key Unknown, @SYS73068

Control label is a copy of

its display method label

 Label Is Copy Of Display Method, @SYS60361

Control label is a copy of

its field label

 Report Label Is Copy Of Fields Label,

@SYS57599

Control name %1 is not

unique.

 Form Control Name Not Unique, @SYS87713

CurrencyCodeField does

not use an extended data

type derived from

CurrencyCode.

For more

information, see

Best Practices

for Currency

Code Fields.

Field Currency Code Field Invalid, @SYS89379

CurrencyCodeField must

not be blank when

CurrencyCode is set to

CurrencyCodeField.

For more

information, see

Best Practices

for Currency

Code Fields.

Field Currency Code Field Empty, @SYS89329

CurrencyCodeTable must

not be blank when

CurrencyCode is set to

CurrencyCodeField.

For more

information, see

Best Practices

for Currency

Code Fields.

Field Currency Code Table Empty, @SYS89328

CurrencyDateField %1

does not use an

extended data type

derived from Date.

For more

information, see

Best Practices

for Table Field

Properties.

Field Currency Date Field Invalid, @SYS97998

10

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

CurrencyDateField must

not be blank when

CurrencyDate is set to

CurrencyDateField.

 Field Currency Date Field Empty, @SYS98000

CurrencyDateTable %1

does not have a

relationship with this

table, or no unique index

exists on the target end

of a relationship with that

table

 Field Currency Date Table Invalid, @SYS98002

CurrencyDateTable must

not be blank when

CurrencyDate is set to

CurrencyDateField.

 Field Currency Date Table Empty, @SYS97995

Current table and table

%1 have Delete Actions

in both directions.

For more

information, see

Best Practices

for Delete

Actions.

Table Delete Action Both Directions,

@SYS74301

Data object class %1 is

missing method %2.

For more

information, see

Best Practices:

Application

Integration

Framework

BPErrorAIFDataObjectExtraMethod,

@SYS124617

Data object class %1 has

extra method %2.

For more

information, see

Best Practices:

Application

Integration

Framework

BPErrorAIFDataObjectExtraMethod,

@SYS124618

Delete Actions related to

an unknown table with

ID: %1

For more

information, see

the following

topics:



 Best

Practices for

Delete Actions

Table Delete Action Unknown Table,

@SYS74302

Display/Edit method

must be defined using a

type

For more

information, see

Using the

display Method

Modifier.

Display Edit No Extended Return Type,

@SYS55403

Display menu item not

defined

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowNoDisplayMenuItem,

@SYS108559

Due date provider does

not reference a valid

For more

information, see

BPErrorWorkflowElementDueDateProviderInval

id, @SYS108545

11

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

class implementing the

WorkflowDueDateProvide

r interface

Workflow Best

Practice Checks.

Element outcome '%1'

ActionMenuItem property

does not reference a

valid action menu item

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowElementOutcomeActionMIInv

alid, @SYS108549

Element outcome '%1'

ActionMenuItem property

not defined

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowElementOutcomeNoActionMI,

@SYS108547

Element outcome '%1'

ActionWebMenuItem

property does not

reference a valid web

action menu item

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowElementOutcomeActionWMIIn

valid, @SYS108548

Element outcome '%1'

EventHandler property

does not reference a

valid class implementing

the '%2' interface

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowElementOutcomeEHInvalid,

@SYS108551

Enum with ID %1 does

not exist.

Ensure that

renamed

objects have not

created a

mismatch

between the

name

referenced and

the current IDs.

Enum Not Exist, @SYS57821

Event handler does not

reference a valid class

implementing the '%1'

interface

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowEventHandlerInvalid,

@SYS108564

Event handler not

defined

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowNoEventHandlerError,

@SYS108563

Extended Data Type is

set to be right justified,

should be set to left

justified

For more

information, see

Best Practices:

Performance

Optimizations

BPErrorEnumRightJustified, @SYS107157

Extended data types that

refer to record IDs must

use RefRecId or a

derived extended data

type.

 Type Extends Rec Id, @SYS92962

Extended data types that

refer to table IDs must

use RefTableId or a

 Type Extends Table Id, @SYS92963

12

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

derived extended data

type.

Field %1 with DEL_

prefix has configuration

%2 instead of

SysDeletedObjects.

For more

information, see

Tables Best

Practice Checks.

BPErrorTableFieldDelConfigKeyConflict,

@SYS107044

Field group autoreport

contains too few fields

(%1).

 Table Field Group Missing Fields, @SYS55439

Field Help is a copy of

the Enum Help

 Field Help Is Copy Of Enum Help, @SYS55431

Field Help is a copy of

the Extended Data Type

Help of the field

 Field Help Is Copy Of Extended Help,

@SYS55429

Field is not a member of

a field group

For more

information, see

the following

topics:

 Best

Practices for

Fields Belong to

a Field Group

 Best

Practices for

Field Groups

Table Field Not In Field Group, @SYS55434

Field label is a copy of

the Enum label

 Field Label Is Copy Of Enum Help,

@SYS55430

Field label is a copy of

the Extended Data Type

label of the field

 Field Label Is Copy Of Extended Help,

@SYS55428

Field must be defined

using a type

 Table Field Not Defined Using Type,

@SYS55426

Field with ID %1 does

not exist in table %2

A field in a table

can be

referenced by

the field ID in

several ways.

For example,

the field ID can

be referenced

by a relation, or

by a field group.

This error can

be resolved by

determining

where the field

ID is being

referenced.

Form Group Field Id Unknown In Table (Also:

Table Relation Unknown Extern Field, Table

Relation Unknown Field, Type Field Not Exist

In Table), @SYS55418

Fields using RefRecId or

a derived type must have

a relation defined for that

 Table Field Ref Rec Id Without Relation,

@SYS92956

13

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

field.

Form group (%1) and

table group (%2) have

different numbers of

fields. Consequently,

they cannot be AOS

optimized.

For more

information, see

Best Practice

Options: AOS

Performance.

Form Group Control Dif Num Of Fields,

@SYS68381

Form reference does not

exist %1

For more

information, see

Best Practice

Options:

Reference.

Table Unknown Form Ref, @SYS55414

Help defined on a control

that cannot display Help

 For more

information, see

Best Practices

for Form Control

Properties.

Help Not Defined, @SYS85234

Hierarchy provider does

not reference a valid

class implementing the

WorkflowHierarchyProvid

er interface

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowElementHierarchyProviderInv

alid, @SYS108543

Index %1 has no fields Table Index Without Fields, @SYS87147

Index %1 is overlapped

by index %2.

For more

information, see

Best Practices

for Indexes.

Table Overlapping Index, @SYS87145

Invalid reference to

workflow category

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowTemplateCategory,

@SYS108537

Label %1 cannot end

with a period ('.').

 Label Wrong End Sign, @SYS55433

Label and Help are equal Label And Help Are Equal, @SYS55404

Method is not referenced

in X++ code or indirectly

Add a call to the

unused method,

or remove the

method.

Method Not Used, @SYS55408

Method run on %1 and

has AOSRunMode set to

%2

For more

information, see

Application

Object RunOn

Property

Overview.

Method Bound Wrong, @SYS85345

Missing tag '%1' in XML

documentation.

For more

information, see

Best Practices:

XML

Documentation.

BPErrorXmlDocumentationParamTagMissing,

@SYS107110

Missing tag 'returns' in

XML documentation.

For more

information, see

BPErrorXmlDocumentationReturnsTagMissing,

@SYS107110

14

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

Best Practices:

XML

Documentation.

Missing tag 'summary' in

XML documentation.

For more

information, see

Best Practices:

XML

Documentation.

BPErrorXmlDocumentationSummaryTagMissin

g, @SYS107110

More than one tree node

with this path: %1

For more

information, see

Best Practice

Options: Unique

Tree Node

Names in the

AOT.

AOT Path Not Unique, @SYS68375

No caching set up for the

Table

 Table No Caching, @SYS55412

No caption defined For more

information, see

the following

topics:

 Reports Best

Practice Checks

 Best

Practices for

Report

Properties

Caption Not Defined, @SYS60369

No Help defined Help Not Defined, @SYS55407

No Label defined Add a label

using Tools and

then

Developer.

Label Not Defined, @SYS55406

No such data source %1 Form Group Control Unknown DS, @SYS68379

Not connected to a

Security Key.

Ensure that the
SecurityKey

property has

been set on

objects that

require it.

Security Key Not Connected, @SYS73076

Object has changed ID

since previous release.

Old ID was %1.

It is

recommended

that object IDs

remain

unchanged,

especially for

tables and

fields. Changing

an ID value can

cause errors

during upgrade.

Object Id Conflict, @SYS93546

15

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

For more

information, see

the following

topics:

 Best

Practices for

Enum Properties

 Best

Practices for

Class

Declarations

Object has changed

name since previous

release. Old name was

%1.

 Object Name Conflict, @SYS93547

One of the properties

ParticipantProvider or

HierarchyProvider must

be defined

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowElementNoProvider,

@SYS108542

Parent class contains

abstract methods. Make

class abstract or

implement abstract

methods %1.

For more

information, see

Best Practice

Options:

Abstract.

Class Not Marked Abstract, @SYS74077

Parent Configuration Key

with ID %1 is unknown.

Ensure that the

configuration

key value

assigned to the
ParentKey

property is

valid.

Configuration Parent Key Unknown,

@SYS73075

Parent Security Key with

ID %1 is unknown.

Ensure that the

security key

value assigned

to the ParentKey

property is

valid.

Security Key Unknown, @SYS74743

Participant provider does

not reference a valid

class implementing the

WorkflowParticipantProvi

der interface

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowElementParticipantProviderIn

valid, @SYS108541

Primary index %1 allows

duplicates.

 Table Primary Index Not Unique, @SYS90099

Property %1 must

contain a label ID such as

@SYS4711, not %2

 Help Is Text, @SYS60289

Property %1 must

contain a label ID such as

@SYS4711, not %2

For more

information, see

the following

topic:

Label Is Text, @SYS60289

16

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

 Best

Practices for

Labels

Reference to action menu

item is invalid

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowActionMenuItemInvalid,

@SYS108557

Reference to display

menu item is invalid

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowDisplayMenuItemInvalid,

@SYS108560

Reference to object not

in version control (%1)

In the version

control system,

ensure that you

have created all

the new objects

that the code

depends on.

Method Refers Local Object, @SYS86883

Reference to web action

menu item is invalid

For more

information, see

Workflow Best

Practice Checks.

BPError WorkflowWebActionMenuItemInvalid,

@SYS108558

Reference to web URL

menu item is invalid

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowWebURLMenuItemInvalid,

@SYS108561

Referenced menu does

not exist

For more

information, see

Best Practice

Options:

Reference.

Menu Reference Unknown Ref Menu,

@SYS55488

Relation %1 has no

fields.

For more

information, see

Best Practices

for Table

Relations.

Table Relation No Fields, @SYS92955

Required access level is

No access and Security

Key has been set to %1.

 Menu Function Access Level No Access,

@SYS74738

Required element '%1'

does not reference a

valid workflow element

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowTemplateRequiredElementInv

alid, @SYS108538

Required element '%1'

does not reference same

document as the

workflow template

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowTemplateRequiredDocumentI

nvalid, @SYS108539

RunBase classes should

be able to run on 'Called

From' (Ensure pack and

unpack are implemented

For more

information, see

Best Practices:

Performance

BPErrorClassRunBaseMarkedOnServer,

@SYS107159

17

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

correctly to allow

PromptProm to marshal

the class across tiers)

Optimizations

RunBase

implementations must

have a static description

method.

For more

information, see

Best Practice

Options:

RunBase

Implementation.

Class No Static Description, @SYS72474

Security Key with ID %1

is unknown

Ensure that

renamed

security keys

refer to the

correct ID, or

ensure that the

security key has

been created.

Security Key Unknown, @SYS73073

Table %1 does not exist. Form Property Non Standard Value,

@SYS75683

Table %1 with

DEL_prefix has

configuration %2 instead

of SysDeletedObjects.

For more

information, see

Tables Best

Practice Checks.

BPErrorTableDelConfigKeyConflict,

@SYS107042

Table %1 with

SysDeletedObjects

configuration key (%2)

has no DEL_ prefix.

For more

information, see

Tables Best

Practice Checks.

BPErrorTableDelPrefixConflict,

BPErrorTableDelPrefixConflict,

BPErrorTableIndexDelConfigKeyConflict,

@SYS107043

Table fields that refer to

record IDs must use

RefRecId or a derived

extended data type.

 Table Field Uses Rec Id, @SYS92960

Table fields that refer to

table IDs must use

RefTableId or a derived

extended data type.

 Table Field Uses Table Id, @SYS92961

Table group %1 is

unknown (%2)

Check whether

the reference by

the form group

to the table

group is still

valid.

You might need

to delete the

form group

control, create a

new field group,

and then add a

new form group

control.

Form Group Control No Rel Table Group,

@SYS73328

Table is missing

Clustered Index

For more

information, see

BPErrorTableNoClusteredIndex, @SYS107155

18

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

Best Practices:

Performance

Optimizations

Table is missing Primary

Index

For more

information, see

Best Practices:

Performance

Optimizations

BPErrorTableNoPrimaryIndex, @SYS107156

Table with ID %1 does

not exist

Ensure that

renamed tables

have not

created a

mismatch

between the

name

referenced and

the current IDs.

Table Relation Unknown Extern Table (Also:

Table Relation Unknown Table, Type Extern

Table Unknown), @SYS55416

Tag '%1' exists more

than once in XML

documentation.

For more

information, see

Best Practices:

XML

Documentation.

BPErrorXmlDocumentationDuplicated,

@SYS107215

Tag '%1' has no content

in XML documentation.

For more

information, see

Best Practices:

XML

Documentation.

BPErrorXmlDocumentationParamMissing,

@SYS107150

Tag '%1' in XML

documentation doesn't

match actual

implementation.

For more

information, see

Best Practices:

XML

Documentation.

BPErrorXmlDocumentationParamWrongName,

@SYS107113

Tag '%1' in XML

documentation is not

supported.

For more

information, see

Best Practices:

XML

Documentation.

BPErrorXmlDocumentationUnsupported,

@SYS107111

Tag 'exception' has no

content in XML

documentation.

For more

information, see

Best Practices:

XML

Documentation.

BPErrorXmlDocumentationExceptionMissing,

@SYS107150

Tag 'permission' has no

content in XML

documentation.

For more

information, see

Best Practices:

XML

Documentation.

BPErrorXmlDocumentationPermissionMissing,

@SYS107150

Task outcomes must

contain one enabled

outcome of type

Complete

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowTaskNoCompleteOutcome,

@SYS108552

19

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

The caption of the group

control is a copy of its

table data group label

 Caption Is Copy Of Data Group Label,

@SYS68389

The class will be

discontinued in a later

version %1. Use: %2.

For more

information, see

Best Practices

for Use of

Discontinued

Functionality.

Method Discontinued In Later Vers,

@SYS69514

The Client/Server setup

is different from the

parent class.

For more

information, see

Best Practices

for Method

Modifiers.

Class Run On, @SYS74731

The configuration key for

the Table Field is a copy

of the configuration key

for the Base Enum.

 Table Field Configuration Key Is Copy,

@SYS91245

The configuration key for

the Table Field is a copy

of the configuration key

for the Extended Data

Type.

 Table Field Configuration Key Is Copy,

@SYS91243

The control Help text is a

bad copy, and it should

not be defined here.

 Field Help Is Copy Of Enum Help (Also: Field

Help Is Copy Of Extended Help), @SYS72533

The CurrencyCodeTable

%1 does not have a

relationship with this

table, or no unique index

exists on the target end

of a relationship with that

table.

 Field Currency Code Table Invalid,

@SYS89330

The Dimension field must

always be the only field

in the Dimension group.

 Table Field Group Missing Fields, @SYS74735

The fields in the relation

are incompatible.

'%1.%2' is %3

characters too short.

Ensure that the

data types of

the fields are

identical, or at

least compatible

between the

two sides of the

relation. Ensure

that the strings

in the foreign

key are at least

as long as the

strings in the

corresponding

primary key.

Table Relation Fields Incompatible (Also: Type

Fields Incompatible), @SYS55422

20

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

The form size exceeds

the maximum of %1 *

%2 pixels. Current size

%3 * %4 (%5\% *

%6\%).

 Form To High, @SYS75346

The keyword forceliterals

must not be used in the

query expression

 TwC Dangerous API, @SYS81941

The method will be

discontinued in a later

version %1%2%3. Use

%4

For more

information, see

Best Practices

for Use of

Discontinued

Functionality.

Method Discontinued In Later Vers (Also:

Method Dict Method Display Id Not Used),

@SYS68910

The primary key field

cannot be edited on

update (AllowEdit must

be set to No)

 Table Primary Key Editable, @SYS60598

The primary key field

must be mandatory.

 Table Primary Key Not Mandatory,

@SYS56378

The referenced

application object does

not exist (%1 %2).

For more

information, see

Best Practices

for Existence of

Referenced

Application

Objects.

Menu Function Unknown Ref Object,

@SYS72553

Title field %1 must be

declared.

For more

information, see

Best Practices

for Declared

Title Fields.

Table Title Field1 Not Declared, @SYS56377

Title field 2 must be

different from title field 1

For more

information, see

the following

topic:

 Best

Practices for

Declared Title

Fields

Table Title Field2 Not Declared, @SYS83885

TwC: Assert usage of API

%1 because it is

protected by Code Access

Security.

For more

information, see

the following

topics:

 Code Access

Security

 Secured

APIs

TwC Dangerous API, @SYS98156

TwC: Parameters to API

%1 must be validated.

When code

contains calls to

system or

TwC Dangerous API, @SYS90609

21

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

kernel methods

that may harm

Microsoft

Dynamics AX,

the parameter

data passed into

those calls must

be reviewed to

ensure that the

calls are

harmless. After

review, you may

need to

suppress the

best practice

error. For more

information, see

the following

topic:

 APIs Turned

Off by Default

TwC: Validate data

displayed in form is

fetched using record level

security. Dangerous API

%1 used.

For more

information, see

Best Practices:

Avoiding

Potential

Security Issues.

BPErrorTwCEnsureRecordLevelSecurity,

@SYS98155

Type Help is a copy of

the Enum Help

 Type Help Is Copy Of Enum Help, @SYS55451

Type label is a copy of

the Enum label

 Type Help Is Copy Of Enum Help, @SYS55450

Type label is a copy of

the Extended (..) Data

Type label of the type

 Type Label Is Copy Of Extended Help,

@SYS55448

Unique index %1

contains field %2 with

SysDelete configuration

config key assigned to it.

A field in an

index has been

made obsolete

by an upgrade

to Microsoft

Dynamics AX

because it was

marked with

SysDelete. This

field was part of

a unique index.

Redesign the

unique index.

For more

information, see

Unique Indexes.

Table Sys Delete Field Index, @SYS99948

Unique index error: For more Table Unique Index Error, @SYS93535

22

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Error message text Description BPError code and label

Fields removed from

unique index: %1.

Upgrade script required.

information, see

.

Unique index error:

Previous nonunique index

is now unique. Upgrade

script required.

For more

information, see

Unique Indexes.

Table Unique Index Error, @SYS93534

Unique index error:

Unique index introduced.

Upgrade script required.

For more

information, see

Unique Indexes.

Table Unique Index Error, @SYS93533

Use Client/Server neutral

functionality. Do not use:

%1%2%3. Use: %4.

 Method Neutral Funct Not Used, @SYS54379

Version mismatch of

packed container. Check

implementation of

SysPackable interface.

For more

information, see

Best Practices

for Interfaces.

Class Sys Packable, @SYS93536

Workflow document does

not reference a valid

class deriving from

WorkflowDocument

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowDocumentInvalid,

@SYS108555

Workflow document not

defined

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowNoDocument, @SYS108554

XML documentation is

not well-formed.

For more

information, see

Best Practices:

XML

Documentation.

BPErrorXmlDocumentationNotWellFormed,

@SYS107112

Warning Messages

Warning message

text

Description BPError code and label

%1 on control is

set to nonauto

(Date format)

 Report Date Format Set Non Auto, @SYS60296 +

@SYS23272

%1 on control is

set to nonauto

(Decimal separator)

 Report Date Format Set Non Auto, @SYS60296 +

@SYS24260

%1 on control is

set to nonauto

(%2)

 Report Thousand Sep Set Non Auto, @SYS60296

A data entry form

should have at

least two tab

pages.

For more

information, see

Forms Best

Practice Checks.

Form Property Non Standard Value, @SYS84385

A display or edit

method has the

 Table Field Has Same Name As Method,

@SYS97063

23

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

same name as this

field. Rename the

method or the field,

and check whether

field groups that

contain this field

should contain the

method instead.

Adjustment

property for field

%1 of table %2

does not match its

related field %3 of

table %4

 Table Relationship Field Adjustment, @SYS91673

A document

handling button on

an Action Pane

should have its

Name property set

to "Attachments".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageDocHandlingCmdButtonNameNotAtt

achments, @SYS116209

A document

handling button on

an Action Pane

should use the label

@SYS114630 for its

Text property.

For more

information, see

Best Practices:

List Pages.

BPErrorListPageDocHandlingCmdButtonTextNotAtta

chments, @SYS116210

A List Page must

have a grid.

For more

information, see

Best Practices:

List Pages.

BPErrorListPageFormHasNoGrid, @SYS116225

A List Page must

have a single

Action Pane.

For more

information, see

Best Practices:

List Pages.

BPErrorListPageFormHasNoActionPane ,

BPErrorListPageFormHasTooManyActionPanes,

@SYS116224

All buttons on an

Action Pane should

have their

ShowShortcut

properties set to

"No" to suppress

the addition of

extra characters for

pneumonic usage.

For more

information, see

Best Practices:

List Pages.

BPErrorListPageActionPaneButtonShowShortcutNotN

o, @SYS116207

An Action Pane

should not be

present on a form

that isn't a List

Page or other

Content Page.

For more

information, see

Best Practices:

List Pages.

BPErrorFormHasActionPane, @SYS116229

AnalysisSelection Table Analysis Selection Auto, @SYS89276

24

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

should not be Auto

for a table that is

visible for analysis.

AnalysisVisibility

should not be Auto

for a field in a table

that is visible for

analysis.

 Field Analysis Visibility Auto, @SYS89279

AnalysisVisibility

should not be Auto

for a nonsystem

table.

 Table Analysis Visibility Auto, @SYS89275

AnalysisVisibility

should not be Auto

for security keys

that have no parent

security key

For more

information, see

Best Practices

for Analysis

Visibility.

Security Key Analysis Visibility Auto, @SYS89711

Class should have

at least one

member

For more

information, see

Best Practice

Options: Missing

Member

Function.

Class Missing Member, @SYS55390

Configuration Key

is %1

Ensure a valid

configuration

key name is

being used,

rather than a

placeholder

value like "Not

decided."

Configuration Key Specific (Also: Configuration

Parent Key Specific, Security Key Specific),

@SYS72461

Consider %1

method to run on

%2 because it

uses: %3

For more

information, see

the following

topics:

 Application

Object RunOn

Property

Overview

 Object Class

Method Consider Run On, @SYS54211

Consider

alternative to single

quoted text %1

appearing in %2

For more

information, see

Best Practice

Options: Single

Quoted Text.

Method Single Quoted Text, @SYS68040

Consider

autodeclaring the

form control %1

 Method Not Auto Declared, @SYS68393

Consider

restructuring the

For more

information, see

Method Consider Restructuring, @SYS54324

25

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

%1 method

because it has calls

to the %2 server

methods: %3, and

the %4 client

methods: %5.

Best Practices

for Method

Modifiers.

Consider use of

delete_from

because method

contains 'while

selectdelete()'

 Method Delete From Not Used, @SYS55398

Consider use of

more specialized

intrinsic

functionality

because method

contains %1

For more

information, see

Intrinsic

Functions.

Method Identifier Str Used, @SYS55399

Consider using a

field list for select

of %1. Only %2%

of record size is

used.

 Select Using Field List, @SYS91289

Consider using

keyword 'firstonly'

for select of %1.

 Select Using First Only, @SYS91288

Control is not

defined using

anything (type,

field or method)

Assign a source

of information to

the report

control. Bind the

control to a

type, field, or

method, or

remove the

control.

Report Control Use Not Defined, @SYS60363

Control is set to

fixed width

For more

information, see

Best Practices

for Form Control

Properties.

Report Control Set Fixed Width, @SYS60297

CurrencyCode

should be

SecondaryCurrency

when the field uses

an extended data

type derived from

AmountMSTSecond

ary and the field is

visible for analysis.

For more

information, see

Best Practices

for Currency

Code Fields.

Field Currency Code Secondary Currency,

@SYS89712

CurrencyDate

should not be Auto

 Field Currency Date Auto, @SYS98001

26

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

when a field is

using an extended

data type derived

from money or

moneyMST and the

field is visible for

analysis

Display methods

must be typed ('%1

%2')

For more

information, see

Best Practices

for Unique

Labels.

Table No Extended Return Type, @SYS60362

Display/edit

method does not

use an Enum or

Extended Data

Type as return

type: %1

For more

information, see

Best Practices

for Use of

Labels.

Table No Extended Return Type, @SYS72489

Do not disable the

control by setting

Enabled to No. Set

AllowEdit to No and

Skip to Yes.

For more

information, see

Best Practices

for Disabling

Technique.

Form Disabling Technique, @SYS72538

Do not write to

parameters (such

as %1 in line %2,

column %3)

 Method Variable Dont Write To Parms, @SYS60115

Duplicated user

interface texts.

Fields: %1.

For more

information, see

Best Practices

for Labels.

Table Duplicate UI Text Field, @SYS75650

Duplicated user

interface texts.

Method %1.

For more

information, see

Best Practices

for Labels.

Table Duplicate UI Text Method, @SYS72498

Element outcome

'%1' EventHandler

property should be

defined

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowElementOutcomeNoEH,

@SYS108550

Enum field is

Mandatory

 Table Field Enum Is Mandatory, @SYS55432

Enum is not

referenced in X++

code, in the table

field or in an

Extended Type

 Enum Not Used, @SYS55470

Event handler

should be defined

For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowNoEventHandlerWarning,

@SYS108562

27

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

Field is not

referenced in X++

code

Add a reference

to the field, or

remove the

unreferenced

field.

Table Field Not Used, @SYS55427

FieldGroup

AutoReport does

not exist.

 Table Missing Group Auto Report, @SYS55415

Help must end with

a period or a

question mark.

 Help End Wrong Sign, @SYS72462

If Adjustment is set

to Left, the

StringSize for field

%1 of table %2

must be greater

than or equal to its

related field %3 of

table %4.

Increase the

StringSize of the

foreign key field.

Table Relationship Foreign Key To Short,

@SYS91675

If Adjustment is set

to Right', the

StringSize for field

%1 of table %2

must match that of

its related field %3

of table %4.

For more

information, see

the following

topic:

 Table Field

Properties

Table Relationship Field String Length, @SYS91674

Illegal name %1

%2: %3. Use

parent, child, or

sibling.

Terms like

father, mother,

sister, and

brother should

not be part of a

member name.

Replace the

improper term

with parent,

child, or sibling.

Method Illegal Name, @SYS57827

Implement static

construct to allow

for modifications.

For more

information, see

Best Practices

for Static

Construct

Methods.

Class No Static Construct, @SYS82256

Label is changed on

the control from

%1 to %2

 Label Changed At Control, @SYS60298

Label on control is

set to fixed width

For more

information, see

Form Control

Properties.

Report Controls Label Set Fixed, @SYS60295

List Page Action For more BPErrorListPageControlVerticalSpacingNotZero,

28

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

Panes must have

their

VerticalSpacing

property set to

zero.

information, see

Best Practices:

List Pages.

@SYS116212

List Page Action

Panes must have

their Width

property set to

"Column width".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageActionPaneWidthNotColumnWidth,

@SYS116211

List Page controls

must not have any

vertical spacing

between them.

For more

information, see

Best Practices:

List Pages.

BPErrorListPageControlVerticalSpacingNotZero,

@SYS116208

List Page

datasources must

have their

AllowCreate set to

"No".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageFormDataSourceAllowsCreate,

@SYS116227

List Page

datasources must

have their AllowEdit

set to "No".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageFormDataSourceAllowsEdit,

@SYS116226

List Page

datasources must

have their

StartPosition set to

"First".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageFormDataSourceStartPositionNotFirs

t, @SYS116228

List Page grids

must have their

AllowEdit property

set to "No".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageGridAllowsEdit, @SYS116213

List Page grids

must have their

Datasource

property set to a

valid datasource.

For more

information, see

Best Practices:

List Pages.

BPErrorListPageGridDataSourceEmpty,

@SYS116217

List Page grids

must have their

DefaultAction

property set to a

button on the form.

The DefaultAction

property should

normally point to a

button that

performs the

"Open" action.

For more

information, see

Best Practices:

List Pages.

BPErrorListPageGridDefaultActionEmpty,

@SYS116214

List Page grids

must have their

For more

information, see

BPErrorListPageGridHeightNotColumnHeight,

@SYS116215

29

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

Height property set

to "Column height".

Best Practices:

List Pages.

List Page grids

must have their

ShowRowLabels

property set to

"Yes".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageGridShowRowLabelIsNotYes,

@SYS116216

List Page grids

must have their

Width property set

to "Column width".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageGridWidthNotColumnWidth,

@SYS117724

List Pages must

have a name that

ends with

"ListPage".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageFormNameDoesNotEndInListPage,

@SYS116218

List Pages must

have their

BottomMargin

property set to

"Auto".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageFormBottomMarginNotAuto,

@SYS116222

List Pages must

have their

LeftMargin property

set to "Auto".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageFormLeftMarginNotAuto,

@SYS116220

List Pages must

have their

RightMargin

property set to

"Auto".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageFormRightMarginNotAuto,

@SYS116221

List Pages must

have their

TitleDatasource

property set.

For more

information, see

Best Practices:

List Pages.

List Pages must

have their

TopMargin property

set to "Auto".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageFormTopMarginNotAuto,

@SYS116219

List Page Action

Panes must have

their

VerticalSpacing

property set to

zero.

For more

information, see

Best Practices:

List Pages.

BPErrorListPageControlVerticalSpacingNotZero,

@SYS116212

List Page Action

Panes must have

their Width

property set to

"Column width".

For more

information, see

Best Practices:

List Pages.

BPErrorListPageActionPaneWidthNotColumnWidth,

@SYS116211

Method availability

can be set explicitly

 Method Access Can Be Set Explicitely, @SYS68392

30

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

to %1 via the

Standard Public

setting.

Method contains

code in unrequired

braces %1 }

For more

information, see

X++ Layout.

Method Non Needed Block Style Used, @SYS59225

Method contains

constant numeric

value: %1

For more

information, see

X++ Standards:

Constants.

Method Constant Numeric Arg Used, @SYS55396

Method contains

labels in single

quotes: >%1<

 Method Label In Single Quotes, @SYS55395

Method contains

parenthesis round

case constant: %1

 Method Parenthesis Round Case Const, @SYS55397

Method is empty For more

information, see

Best Practices

for Empty

Methods.

Method Is Empty, @SYS68904

MinNoOfDecimals is

greater than

NoOfDecimals

For more

information, see

Form Control

Properties.

Form Control Min No Of Decimals (Also: Report

Control Min No Of Decimals), @SYS96235

Missing super call

in new method of

sub class.

 Method Missing Super Call, @SYS62822

Module not defined For more

information, see

Workflow Best

Practice Checks.

BPErrorWorkflowCategoryNoModuleDefined,

@SYS108540

New should be

protected.

For more

information, see

Best Practices

for new and

static new...

Methods.

Class New Not Protected, @SYS82255

No self relation set

up for the Table.

Rename function

will not be

available.

 Table No Self Relation, @SYS56050

No unique index set

up for the table

For more

information, see

Unique Indexes.

Table No Unique Index, @SYS60691

Only parameters

must start with an

underscore, not

variables such as

For more

information, see

the following

topics:

Method Variable With Underscore, @SYS60113

31

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

%1  Best

Practices for

Parameters

 Naming

Conventions:

Underscores

Relation line %1

has possible errors

in setup of the

Configuration Keys.

Field %2 has

Configuration Key

set %3 and field

%4 has

Configuration Key

set %5.

 Configuration Key Sets Not Ok, @SYS74477

Relation line %1

has possible errors

in setup of the

Configuration Keys.

Type %2 has

Configuration Key

set %3 and field

%4 has

Configuration Key

set %5.

 Configuration Key Sets Not Ok, @SYS74534

Relation to table

%1 (using %2)

which is not in this

table collection

For more

information, see

Best Practices

for Relations.

Table Collection Relation, @SYS68398

Relations defined

for a single record

ID field should be

defined on the

extended data type

for that field.

 Table Field Ref Rec Id Relation On Table,

@SYS92957

Report design

orientation is not

set to Auto

For more

information, see

Best Practices

for Report

Properties.

Report Des Orientation Not Set Auto, @SYS60368

Report has

generated design

%1

For more

information, see

Best Practices

for Report

Design.

Report Has Generated Design, @SYS60365

Report template

%1 does not exist

For more

information, see

Best Practices

for Report

Report Unknown Template, @SYS60367

32

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

Properties.

Security Key is %1 Ensure a valid

security key

name is being

used, rather

than a

placeholder

value like "Not

decided."

Security Key Specific, @SYS73072

Security key should

not be specified on

container controls

because it prevents

personalization.

For information

about the

personalization

choices that are

possible for

container

controls, see

Form Control

Properties.

Security Key Not Allowed, @SYS91028

SingularLabel

should be provided

for a table that is

visible for analysis.

 Table Singular Label Empty, @SYS89278

Table fields with

AnalysisVisibility

set to DefaultField

or High should be

in included in at

least one

perspective

 Field Visible But Not In Perspective, @SYS94645

Table group is %1. Table No Table Group, @SYS55413

Table has a record

ID index but does

not seem to use the

record ID field

explicitly for lookup

 Table Rec Id Field Used Useless, @SYS60597

Table has no record

ID index but does

use the record ID

field explicitly in

relation in %1

 Table No Record Id Index, @SYS60524

Table has no record

ID index but does

use the record ID

field explicitly in

select ... where in

%1

 Table No Record Id Index Select, @SYS60523

Table has no record

ID index but uses it

%1 times

 Table No Record Id Index But Used, @SYS60522

Table has record ID Table Record Id Index Not Use Field, @SYS60520

33

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

index but does not

use record ID field

explicitly

Table is using

CreatedDateTime

+or

ModifiedDateTime,

RecId index needs

to be created.

For more

information, see

Tables Best

Practice Checks.

BPErrorRecIDNeededCreatedModifiedDateTime,

@SYS127410

Tables with

AnalysisVisibility

set to High,

Medium, or Low

should be included

in at least one

perspective

For more

information, see

Best Practices

for Analysis

Visibility.

Table Visible But Not In Perspective, @SYS94641

Tables with only

one index should

have it defined as a

cluster index

For more

information, see

Clustered

Indexes.

Table One Index Not Cluster, @SYS68395

Tag '%1' in XML

documentation is

not supported.

For more

information, see

Best Practices:

XML

Documentation.

BPErrorXmlDocumentationUnsupported,

@SYS107111

The Construct

method must only

instantiate the

class. Consider

using a static new

pattern instead.

 Class Construct Pattern, @SYS82257

The CurrencyCode

property should not

be Auto if the field

is derived from the

money Extended

Data Type and the

AnalysisVisibility

property is set to

High or Low.

 Field Currency Code Auto, @SYS89378

The designs

property %1 is

disabled and data

source %2 has

property %3 on

table %4 set to

true. Set the

designs property

%1 to Yes to

ensure that the

Set the design

property to Yes.

Form Property Non Standard Value, @SYS77537

34

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

form restarts in the

previous company.

The design

property %1 is

enabled, but the

property %3 on

table %4 for data

source %2 has not

been set correctly.

Set the design

property %1 to No

to prevent the form

from restarting in

the previous

company.

Set the design

property to No.

Form Property Non Standard Value, @SYS77486

The group could be

based on a (new)

table field group

 Form Group Could Be Based On New Group,

@SYS68387

The group is empty Form Group Is Empty, @SYS68388

The group should

be given a logical

name

For more

information

about groups on

forms, see

Forms Best

Practice Checks.

Form Group No Logical Name, @SYS68385 =

@SYS68384

The primary index

should be defined

because a unique

index exists

For more

information, see

the following

topic:

 Best Practice

Options: Use of

Indexes

Table Unique Index No Primary, @SYS68396

The property %1

has a nondefault

value %2. Expected

%3.

All form

properties that

have an Auto or

Default setting

should be kept

at that setting.

For more

information, see

Best Practices

for Form Design

Properties.

Form Property Non Standard Value, @SYS72374

The property %1

should be set to

%2.

 Form Property Non Standard Value, @SYS84109

The word %1 is not

spelled correctly.

For more

information, see

Best Practices

for Spelling.

Doc Node Spelling Mistake, @SYS84009

35

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Warning message

text

Description BPError code and label

This class without

members does not

extend any other

class

For more

information, see

Best Practice

Options: Missing

Member

Function.

Class No Member Not Extend, @SYS55391

This date

construction can be

illegal: %1

For more

information, see

Best Practice

Options: Date

Features.

Method Illegal Date Construction, @SYS68391

ttsbegin/ttscommit

are unbalanced

with %1

For more

information, see

X++ Standards:

ttsBegin and

ttsCommit.

Method Unbalanced Ttsbegin Commit, @SYS57826

TypicalRowCount

should not be Auto

for a table that is

visible for analysis.

 Table Typical Row Count Auto, @SYS89277

Unextended class

without members is

not extended by

any other class

Add a member

to the class, or

remove the

class.

Class Unextended Not Extend, @SYS55392

Use other

construction than

this illegal one:

%1%2%3

For more

information, see

Best Practices

for Static

Construct

Methods.

Method Illegal Construction Used, @SYS55400

Variable %1 is not

written, but read.

For more

information, see

Best Practices

for Use of

Variables.

Method Variable Read But Not Written, @SYS60114

Wrong security key.

Security key must

match position in

Main Menu.

 BPCheck, @SYS76678

XML documentation

not written for this

method.

For more

information, see

Best Practices:

XML

Documentation.

BPErrorXmlDocumentationMissing, @SYS107198

See Also

Setting Up Best Practices Checks

Best Practices: Avoiding Potential Security Issues

36

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

New Best Practices in Microsoft Dynamics AX 2009

When using the Microsoft Dynamics AX development environment, you should adhere to a

set of best practices. The X++ compiler checks the code for best practice issues. These

issues can result in a best practice message that is an error, warning, or informational. Best

practice checks are recommended for any Microsoft Dynamics AX partner or end user who is

enhancing or customizing Microsoft Dynamics AX. The following sections provide information

about the best practice checks that were added for this release. For information about

Microsoft Dynamics AX 4.0, see New Best Practices in Microsoft Dynamics AX 4.0.

Application Integration Framework

Best practice checks for Application Integration Framework (AIF) verify that the data object

is synchronized with the underlying artifacts that were used to define the data object. The

best practice check is for missing or extra methods in the data object. For more information,

see Best Practices: Application Integration Framework.

List Pages

The goal of the best practice checks for list pages is to establish a common look and

behavior for all list pages. The checks are run for new or modified list pages. For more

information, see Best Practices: List Pages.

Performance

Best practice checks for performance were added regarding indexes, extended data types,

minimizing remote procedure calls, and details of RunBase classes. For more information, see

Best Practices: Performance Optimizations.

Security

A best practice check for security was added to alert you when a dangerous API was used

and a review is required. For more information, see Best Practices: Avoiding Potential

Security Issues.

Tables

Best practice checks were added to prevent problems that occur when objects are marked

to be deleted but are not linked to a SysDeletedObjects configuration key and vice versa. For

more information, see Tables Best Practice Checks.

Table Fields

A best practice check was added to verify that when an InventDimId field is added to a table,

code for handling the field is also added to the Multisite Activation Wizard. For more

information, see Best Practices: Table Fields.

Workflow

Best practice checks for workflow focus on the properties of workflow categories, templates,

approvals, and tasks. The checks verify that the properties are correctly configured for

execution. For more information, see Workflow Best Practice Checks.

XML Documentation

Best practice checks for XML documentation focus on the validity of the documentation

provided. The checks verify that particular sections are included. For more information, see

Best Practices: XML Documentation.

37

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

See Also

Best Practices for Microsoft Dynamics AX Development

List of Best Practice Error and Warning Messages

New Best Practices in Microsoft Dynamics AX 4.0

New Best Practices in Microsoft Dynamics AX 4.0

When using the Microsoft Dynamics AX development environment, you should adhere to a

set of best practices. The X++ compiler checks the code for best practice issues. These

issues can result in a best practice message that is an error, warning, or informational. Best

practice checks are recommended for any Microsoft Dynamics AX partner or end user who is

enhancing or customizing Microsoft Dynamics AX.

Disabling Best Practices Warnings

You can disable individual warnings caused by a best practices deviation in a particular piece

of X++ code. For more information, see Setting Up Best Practices Checks.

Classes

It is a best practice to have a static construct method for every X++ class. For more

information, see Best Practices for Static Construct Methods.

The instance new method should be protected. For more information, see Best Practices for

new and static new... Methods.

Form Design

The maximum size for a form has been increased from 800 x 500 to 824 x 668. For more

information, see Forms Best Practice Checks.

The first two tab pages of data entry forms must be Overview and General.

New best practices for form design properties are:

 HideToolbar should be set to No for data entry forms and Yes for lookup forms.

 Columns should be set to 1 for data-entry forms.

 TitleDatasource should be the same as the data source if there is only one data source.

 Caption should be the same as the label defined in the TitleDatasource property for the

table if there is only one data source.

For more information, see Best Practices for Form Design Properties.

Table Fields and Extended Data Types

Do not use the system recID or tableID data types directly for table fields, or for extended

data types. Instead, use RefRecID or RefTableID.

If a table field uses RefRecID or a type derived from it, a relationship must be defined for that

field.

Do not create a table relationship for a single field if the field is derived from RefRecId.

Create a relationship on the extended data type for that field instead.

For more information, see Best Practices: Table Fields, Extended Data Types Best Practice

Checks, and Best Practices for Table Relations.

Code Layout

You should now put braces round every code block—even if the block contains only a single

line. Previously, it was acceptable not to put braces around single-line code blocks as long

as they did not form part of an if...else statement.

Lines of code must start in tab positions (1, 5, 9, and so on). It is an error if a line of code

starts in columns 2, 3, or 4.

38

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Certain reserved words, such as if, else, switch, and while must be at the start of a code line

and in a tab position.

For more information, see X++ Layout.

Comments

Use only the "//" comment notation.

Do not put comments at the end of a code line. Put them on the line before the relevant line

of code.

For more information, see X++ Standards: Comments.

Naming conventions

Do not begin a name with "aaa," or "CopyOf." Do not begin a name with "DEL_" unless it is

a table, extended data type, or enum, and is needed for data upgrade purposes. For more

information, see Naming Conventions.

Interfaces

There are new Best Practices for SysPackable and SysUnitTestable. For more information, see

Best Practices for Interfaces.

See Also

Best Practices for Microsoft Dynamics AX Development

Setting Up Best Practices Checks

Check your code and application objects for compliance with best practice rules for Microsoft

Dynamics AX.

Using the Best Practice Tool

To access the best practice tool
1. From the Microsoft Dynamics AX menu, point to Tools and then click Options.

2. Click the Best Practices.

3. In the Warning level list, select the checks that you want to perform.

4. Click the OK button.

Best practice compliance will be checked when you compile or check in an object.

For information about enabling best practice checks, see How to: Enable Best Practice

Checks. You can also check best practice compliance for one or more nodes in the

Application Object Tree (AOT).

To check best practices for nodes in the AOT
1. In the AOT, right-click a node, point to Add-Ins and then click Check Best Practices.

Understanding the Results

Results are displayed in an Infolog. Descriptions of the severity codes are listed in the

following table.

Severity code Description

 Informational message Supporting information and no action is

required (shown in blue).

 Warning message Violations that you should consider fixing

39

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Severity code Description

(shown in yellow).

 Error message Severe violations that must be fixed

(shown in red).

If you double-click a message, the code editor will open at the offending line of code.

Fixing the Violations

Fix the violations for as many of the warnings and errors as possible. The goal is to increase

the quality of the code not just to reduce the number of messages in the Infolog.

Note:

Code that causes a best practice error can be prevented from being checked into the

version control system based on version control settings.

See Also

Best Practices for Microsoft Dynamics AX Development

How to: Enable Best Practice Checks

You should check your code and application objects for compliance with the best practices

for Microsoft Dynamics AX.

Enabling Best Practice Checks

Use the following procedures to enable, identify, and check your code for best practice

compliance.

To enable best practice checks
1. From the Microsoft Dynamics AX menu, point to Tools, and then click Options.

2. In the Options form, click the Compiler button.

3. Set the Diagnostic level to Level 4.

4. Click OK.

To identify which best practice checks to enable
1. In the Options form, click the Best Practices button.

2. In the Best Practice parameters form, select the best practice parameter checks that you

want to verify in your code.

3. Set the Warning level drop-down to All.

To check your code and application objects for best practice compliance
1. In the AOT, right-click the element you want to verify for best practice compliance
and then click Compile. Best practice information is provided in the Compiler output in the

Best Practices tab.

See Also

Setting Up Best Practices Checks

How to: Suppress Best Practice Checks

How to: Create Best Practice Checks

Best Practice Options

Best Practice Compiler Enforced Checks

40

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practices for Microsoft Dynamics AX Development

How to: Suppress Best Practice Checks

Most best practice violations are intended to be resolved but you may have a valid scenario

where you want to suppress the violation. Violations can be suppressed at design time or

run time.

Suppressing Best Practice Violations

In this section, you will suppress best practice violations at design-time. You will mark the

violation and the best practice tool will reduce the severity of the violation error or warning

to a level of an informational message.

To suppress a best practice check in code
1. In code editor, add the following code before the offending best practice violation.

//BP Deviation Documented

To suppress a best practice violation in the model or at run-time, you must know the error

code and error code text.

To suppress a best practice check in the model
1. In the Compiler output, on the Best Practices tab, right-click the best practice violation you

want to suppress, and then click Record Info.

2. In the Record information dialog box, click the Show all fields button. The error code is

found in the Other fields section of the Compiler information window.

3. In the AOT, expand the Macros node and double-click SysBpCheck.

4. Press CTRL+F to find the error code you identified in step 2.In the AOT, expand the Macros

node and double-click SysBpCheckIgnore.

5. Add a line that contains the AOT path and the error code text to ignore. Your code to

suppress a best practice violation will resemble the following.

<violation errorcode="#BPErrorObjectNameConflict"

 path="\Classes\EmplADImport"/>

In this section, you will suppress best practice violations at run-time. Suppressing violations

in this manner sets the best practice tool to not acknowledge certain types of violations. You

must know the error code text as described earlier in this topic.

To suppress best practice check at run time
1. In the AOT, right-click Jobs, and then click New Job.

2. Add the following code.

SysBpCheck::ignore(#error_code_text_that_you_want_to_suppress);

3. Press F5 to run the job.

The best practice error will be suppressed until the Microsoft Dynamics AX session

ends.

See Also

Setting Up Best Practices Checks

How to: Enable Best Practice Checks

How to: Create Best Practice Checks

Best Practice Options

Best Practice Compiler Enforced Checks

41

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practices for Microsoft Dynamics AX Development

How to: Create Best Practice Checks

The best practice check tool is implemented in X++ so that you can customize or extend the

best practice tool.

Creating Best Practice Rules

There is a best practice class for each element in the AOT.

To find the best practice class
1. In the AOT, expand the Classes node and find the best practice class for the element you

want to create a best practice rule for. The class name will start with SysBPCheck followed by the

AOT element. For example, the SysBPCheckTable class contains best practice rules for tables.

2. Right-click the class and click New Method. You will include your code for the best practice

check in the new method.

For example, this best practice rule will check that developers are using comment

headers. This method was added to the SysBPCheckMemberFunction class.

private void checkCommentHeader()

{

 str source = memberFunction.AOTgetSource();

 ;

 // Check if the comment is included.

 if (!strStartsWith(source, '//'))

 {

 // Report the error.

 sysBPCheck.addError(10000, 1, 1, "Missing header comment");

 }

}

You must also add a line to the check method of the class to call your new best practice

check method.
this.checkCommentHeader();

Note:

When you compile a method without the header information, the Compiler output

dialog box will report the best practice error.

See Also

Setting Up Best Practices Checks

How to: Enable Best Practice Checks

How to: Suppress Best Practice Checks

Best Practice Options

Best Practice Compiler Enforced Checks

Best Practices for Microsoft Dynamics AX Development

Best Practice Options

Use the Best Practice Options form to select which best practice checks to verify. Best

practice checks help to make sure that the best practice guidelines are followed.

Select the Warning level to specify the kinds of messages produced. The warning levels

are as follows:

 Errors only - Messages only about best practice errors

 Errors and warnings - Messages only about best practice errors and warnings

42

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 All - Messages about violations to all best practices checks

Use the check box to mark or clear individual checks.

Note:

Disabling a check suppresses the messages about violations to the check, not the check

itself.

To see descriptions of the best practices checks, click the names of the checks that appear

in the tree in the right pane of the Best Practice parameters dialog.

See Also

Best Practices for Microsoft Dynamics AX Development

Best Practice Compiler Checks for Application Objects

This section of the SDK describes the best practices for objects in the application object tree

(AOT). It includes advice about how to set object properties.

 Data Dictionary Best Practice Checks (includes best practices for tables, views, extended

data types, base enums, configuration keys, security keys, table collections, and

perspectives).

 Macros Best Practice Checks

 Classes and Methods Best Practice Checks

 Forms Best Practice Checks

 Reports Best Practice Checks

 Queries Best Practice Checks

 Jobs Best Practice Checks

 Menu Items Best Practice Checks

 Web Best Practice Checks

Data Dictionary Best Practice Checks

The Data Dictionary node in the AOT contains the following items:

This section of the SDK contains programming standards related to the following data

dictionary items:

 Tables, including Fields, Field Groups, index design and index properties, relations and

table methods

 Views

 Extended Data Types

 Base Enums

 Configuration Keys and Security Keys

43

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 Table Collections

 Perspectives

See Also

Best Practice Compiler Checks for Application Objects

Tables Best Practice Checks

This section of the SDK describes the best practices for tables.

Best Practice Checks

The following table lists the best practices error messages and how to fix the errors.

Message Message type How to fix the error or
warning

Table %1 with

SysDeletedObjects

configuration key (%2) has no

DEL_prefix.

Error The object is linked to a

SysDeletedObjects

configuration key but is not

marked as DEL_. Mark the

object as DEL_.

Table %1 with DEL_prefix has

configuration %2 instead of

SysDeletedObjects.

Error The object is marked as DEL_

but it is not linked to a

SysDeletedObjects

configuration key. Unmark the

object as DEL_ or link to the

SysDeletedObjects

configuration key.

Table is using

CreatedDateTime +or

ModifiedDateTime, RecId index

needs to be created.

Error The RecId-index must be

enabled when either the

CreatedDateTime or

ModifiedDateTime is enabled

on the table.

Index %1 with

SysDeletedObjects

configuration key (%2) has no

DEL_prefix.

Error The object is linked to a

SysDeletedObjects

configuration key but is not

marked as DEL_. Mark the

object as DEL_.

Field %1 with DEL_ prefix has

configuration %2 instead of

SysDeletedObjects.

Error The object is marked as DEL_

but it is not linked to a

SysDeletedObjects

configuration key. Link to the

SysDeletedObjects

configuration key.

Field %1 with

SysDeletedObjects

configuration key (%2) has no

DEL_ prefix.

Error The object is linked to a

SysDeletedObjects

configuration key but is not

marked as DEL_. Mark the

object as DEL_.

44

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practices for Table Properties

The following table describes the Microsoft Dynamics AX standards and best practices

(rules) for setting table properties. (The properties are in the same order as the UI; related

properties are grouped together.)

For a description of each property, see Table Properties.

Property Rules
ID Always ship a table with the same ID that

it has previously shipped with.

If you try to create a new table with an

ID that has already been used for a table

in a previous version of Microsoft

Dynamics AX, an error occurs.
Name Prefix with the Module name. For

example, Cust, Vend, or Invent.

Infix with a logical description of the

contents. For example,

CustCollectionLetterTrans, where

CollectionLetter is the infix. For

temporary tables, infix with Tmp. For

example, CustTmpLedger.

Postfix with the type of contents. For

example, Trans, Jour, Line, Table, Group,

Parameters, or Setup.

The primary tables for the major business

areas are postfixed with Table. For

example, CustTable, InventTable, and

VendTable.
Label Mandatory unless the table has the

MaxAccessMode property set to NoAccess. An

error occurs if:

 You do not set this property.

–and–

 MaxAccessMode is not set to NoAccess.

The text value of the label must be

unique across all tables (excluding

temporary tables), views, and maps, in

all languages.
FormRef For tables where the TableGroup property

has been set to Group, Main, or

WorksheetHeader, you must do the

following:

 Have a form to maintain the table

records.

 Set the FormRef property to the name

of a display menu item.

The form and the display menu item that

are used to start the form should have

the same name as the table. An example

45

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

of this rule is the CustTable table in

Microsoft Dynamics AX.

Note:

Don't set the FormRef property for

tables where the MaxAccessMode

property is set to NoAccess. These

tables are not used in a form.
TitleField1, TitleField2 Mandatory unless:

 The MaxAccessMode property for the

table is set to NoAccess.

–or–

 The TableGroup property is set to

Parameter.

Don't set this property if there are not

enough fields (according to your needs)

in the table. (Fields of type real or integer

should not be used as title fields.)

Specify the two best fields for TitleField1

and TitleField2 according to the following:

 TitleField1 – The key field for the

records in the table. Use a descriptive

title if the key field has information for

the user.

 TitleField2 – A descriptive field for the

records in the table.

For example, for the Table

InventItemGroup table, TitleField1 is

ItemGroupId, and TitleField2 is Name.

If the value of TitleField1 and TitleField2

is the same, an error occurs.
Temporary Use the setTmp table method to make a

non-temporary table temporary rather

than creating a copy of the table, and

then making it temporary. The two

versions of the table can quickly become

out of sync.
TableContents Leave this property set to Not Specified

for most tables.

Set to Default Data for customer-

independent data. For example, time

intervals and unit conversions.

Set to Base Data for customer-dependent

data. This data is often from an existing

system that has been imported or

entered into Microsoft Dynamics AX. For

example, customers and vendors.

Set to Default+Base Data for data that

can be customer-dependent in some

countries/regions, but not in others.
SystemTable Set this property to Yes if you want the

46

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

table to be designated as a system table.

For example, the information about the

system table is used during export and

import when system tables can be filtered

out. Don't overuse this feature.
ConfigurationKey Set the ConfigurationKey property for most

tables. This ensures that the table is

removed when the key is disabled.
SecurityKey Mandatory.

This property is mandatory unless the

table's Systemtable or Temporary property is

set to Yes.

Security keys generally follow the layout

of the Navigation Pane. For example,

AdminTables.
MaxAccessMode Mandatory.

If the table is a transactions table, set

this property to View.
CacheLookup Set to the EntireTable value for the

following tables:

 Contains static data (for example:

some Main, and most Group and

Parameter tables).

 Are frequently accessed by the Not

Found cache when it hits select

statements. For example:

 while select.

 == selects something that doesn't

match the cache candidate key.

 select using relational operators other

than == (such as <, > and so on).

 Has a moderate number of records

(hundreds or thousands, but not

millions).

 Is obvious that one select statement

to the database outperforms select

statements to the database.

If a table performs poorly when the cache

type is set to EntireTable, it is possible to

change the cache setting to

FoundAndEmpty or Found for a particular

installation.

Tables with the cache type set to

EntireTable should have a Cluster index.

This ensures that the table loads as

quickly as possible.

If the cache type is set to Found, check

that records are actually found in the

cache.

Ensure that you are using the find

method. Ensure that you do not over-

47

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

qualify the cache candidate key—it will

not utilize the cache.

Remove Found caching from tables that

have no unique index.
CreateRecIdIndex Set this property to Yes only if you

actually need an index on the Record ID

field. All tables have a Record ID

index, but the index is set to Passive

when the CreateRecIdIndex property is set

to No.
SaveDataPerCompany Set to Yes for company-specific tables.

Set to No if the data is related to cross-

companies, installation, a database, the

AOT, tracing, or OLAP. For example,

SysTraceTable or OLAPServerTable.

Note:

If the SaveDataPerCompany property on a

table is set to Yes, the SetCompany

property on a form design that uses

that table as a data source must also

be set to Yes.
TableGroup Mandatory.

Set to Group for tables that contain

grouping and categorizing information. If

the parent table is also a Group table,

you only sometimes establish delete

actions for a table that relates to a group

table.

Deleting records from a group table can

sometimes result in an unstable situation.

Enable confirm deletion. For more

information, see Maintaining Data

Integrity.

Typical examples of Group tables from

the standard application are CustGroup

and VendGroup.

Set to Main for tables that contain base

data.

Note:

Consider using an alias field for all

tables that have the TableGroup

property set to Main. Alias fields are

set by using the AliasFor property on

the field. For example, a phone

number could be an alias for a

customer ID. When the phone number

is entered, it is automatically replaced

by the customer's ID.
PrimaryIndex Mandatory property for tables that have a

unique index.

48

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

If there is more than one unique index,

this property determines which index

Found caching works on.
ClusterIndex Set the index that the table should be

organized by.

Leave the index blank if performance

tests (on realistic data) show that

clustering does not work better (CRUD,

time, space). For more information, see

Clustered Indexes.
AnalysisVisibility Mandatory unless:

 The Systemtable or Temporary properties

are set to Yes.

–or–

 The MaxAccessMode is set to None.

Set the AnalysisVisibility property to the

following values:

 High – tables that are most commonly

needed on reports. For example,

CustTable and VendTable. Don't use High

for more than eight tables in a module.

 Medium – tables that are often

needed on reports.

 Low – tables that are unlikely to be

used for reporting. For example,

Parameter tables.

 None – tables that should not be

shown for end-user reporting.

If you set the AnalysisVisibility property

to High, Medium, or Low, you must

include the table in at least one

perspective in the Application Object Tree

(AOT).
AnalysisSelection Mandatory when:

 The AnalysisVisibility property has

been set.

–and–

 The TypicalRowCount property has not

been set.
TypicalRowCount Mandatory when:

 The AnalysisVisibility property has

been set.

–and–

 The AnalysisSelection property has not

been set.

Select a value that corresponds to the

number of rows that the table will

probably have.
IsLookup Set to Yes if the table consists of only a

primary key and one other field.
SingularLabel Mandatory if you have set the

49

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

AnalysisVisibility property to Yes.
ModifiedDate Set this property to Yes only if you need

the information it provides.
ModifiedTime Set this property to Yes only if you need

the information it provides.
ModifiedBy Set this property to Yes only if you need

the information it provides.
ModifiedTransactionId Set this property to Yes only if you need

the information it provides. Strongly

consider setting worksheet lines to Yes.

This enables you to see what transaction

a change was part of. This information is

useful for audits.
CreatedTransactionId Enable the CreatedTransactionId property if

your table has the TableGroup property set

to Transaction.

If the TableGroup property is not set to

Transaction, set the CreatedTransactionId

property only if you need to use

information about which transaction

created each record in the table.

CreatedBy, CreatedDate, CreatedTime,

ChangedBy, ChangedDate, ChangedTime, LockedBy

Read-only properties.

Modified/Created Fields

The Modified/Created fields are available on all tables, but can be disabled so that space is

not used for unnecessary information.

Information is also available about transaction changes for tables by doing the following:

 Enable the TransactionLog system on all transaction tables.

 Use the database log.

See Also

Tables Best Practice Checks

Best Practices: Table Fields

Microsoft Dynamics AX conducts a best practice check for table fields. For information about

how to set the options for best practice checks, see Best Practice Options. For information

about field properties and field groups, see Best Practices for Table Field Properties and Best

Practices for Field Groups.

Best Practice Checks

The following table lists the best practice error messages and how to fix the errors.

Message Message type How to fix the error or warning

Code to handle the

InventDimId field

must be added to

the Multisite

Activation Wizard.

Error You have added an InventDimId field to a table

and you must also add code for handling this

field to the Multisite Activation Wizard. This is

necessary so that during activation, the site

dimension is properly populated wherever

inventory dimensions are used. You must add

the InventDimId field to

50

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Message Message type How to fix the error or warning
InventSiteActivateDimFieldsCheck.updateableFields

or

InventSiteActivateDimFieldsCheck.notUpdatableFields.

Adding it to one of these would affect whether it

is considered during multisite activation or not.

This error message is being sent through

InventSiteActivateDimFieldsCheck.ValidateField that

receives as a parameter the specific field being

evaluated, you can use a breakpoint to

determine which field is causing the error.

The Multisite Activation Wizard activates the

multisite functionality for a Microsoft Dynamics

AX company. Data references by all InventDimId

fields are updated with site information. Adding

an InventDimId field without updating the Multisite

Activation Wizard makes it impossible to activate

multisite functionality.

Table IDs and Record IDs

Do not directly use the system data types recId or tableId. Instead, use the following

extended data types:

 RefRecId for fields that refer to record IDs

 RefTableId for fields that refer to table ID

 Extended data types derived from RefRecId and RefTableId

If a table field uses RefRecID or a data type that is derived from it, a relationship must be

defined for that field on either the extended data type or the table. . A relationship is not

required, but is recommended, if the field is in a temporary table.

Memo and Container Fields

Review the use of memo and container fields in application tables. Memo and container

fields have the following characteristics:

 Add time to the application fetch

 Add time to the database fetch

 Inhibit array fetching

 Cannot be used in where expressions

Consider using text fields with a specific number of characters instead of memo fields. For

example, use the Addressing extended data type for addressing fields. Use the ItemFreeTxt

extended data type for item descriptions on order lines, and so on.

When selecting tables where the memo or container fields are not needed, consider using a

field list, which excludes the unneeded memo or container fields.

Note:

Use field lists carefully. Ensure that they are not used where additional information

might be needed.

If the memo or container field is rarely used (compared with the other fields in the table),

you could move them away from the table. Place them in a separate table that is then

selected (joined) only when the memo and container fields are actually needed. This helps

avoid potential field list problems.

See Also

Best Practices for Table Field Properties

HelpText Guidelines

51

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practices for Field Groups

Best Practices for Table Field Properties

The following table lists best practices for setting Table Field Properties.

Property Rules
ID Always ship a table field with the same ID

as it has been shipped with before.

If you try to create a new field with an ID

that has already been used by another

field in the previous version of Microsoft

Dynamics AX, you will get an error.
Type Always ship a table field with the same

base type as it has been shipped with

before. The size of the field must be the

same, or greater than it has been before.

Each field must be defined using a type,

or you will get an error.
Name A field should have the same name as the

extended data type used, or it should

have a logical name.

The field making up the key should be

post-fixed "Id," for example, "ItemId."

You can remove the prefix if the name

makes sense. For example

CustTable.CustName could be

CustTable.Name. But do not remove the

prefix for ID fields (CustTable.CustId).

If you try to create a field with a name

that has already been used in the

previous version of Microsoft Dynamics

AX, you will get an error.

A field cannot have the same name as an

edit or display method on the same table.

Label Mandatory property.

It is preferable to put labels on extended

data types. If you choose to overwrite the

value inherited from the extended data

type, the value must be different from

the one for the extended data type.

Do not set the Label property to the same

property as the HelpText property.

The label must be unique for the table.

The label text cannot end with a period.

HelpText Mandatory property.

It is preferable to put HelpText on the

field‘s extended data type. If you choose
to overwrite the value, the value must be

different than the one for the extended

52

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

data type or enumeration.

HelpText must be a complete sentence

and have ending punctuation (".", "?" or

"!").

Do not set the HelpText property to the

same property as the Label property;

the user should be provided with more

detailed information than is available in

the label. For more information, see

HelpText Guidelines.
GroupPrompt It is a best practice to leave this property

blank.

If you do use this property, you must use

a label.
SaveContents Because virtual fields are rarely used, this

property should usually be set to Yes.

Instead of virtual fields, you can use

Using the display Method Modifier.
Mandatory If the field is the primary key (or part of

the key), the property must be set to

Yes.

You should set Mandatory = No for

enum fields. The following case is an

exception:

If the enum first outcome (value = zero)

is named None and has the label Not

selected.

If Mandatory = Yes on an enum field,

the validateWrite method will fail if the

enum field has the value zero.
AllowEditOnCreate Usually set to Yes.
AllowEdit If the field is the primary key (or part of

the key), the property must be set to No.

Visible Usually set to Yes, but it can be set to No

for system-only information (information

that will not be shown on the user

interface), making the field accessible

only from the code.
ConfigurationKey This property must have a value to

disable the field. It is preferable to put a

Configuration key on the field‘s extended
data type or enum.

If you choose to overwrite the value, the

value you give here must be different

than the one for the extended data type

or enum.

Disabling a table‘s configuration key will
also disable the fields in the table.

AliasFor If the user might think of other fields as

keys for the table, in addition to the one

53

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

you have designated as the key, set them

as alias fields. For example, on the item

table, the bar code is an alias for the item

ID.
AnalysisVisibility Mandatory property if the

AnalysisVisibility property has been set

for the table, unless the field property

Visible has been set to No.

Set to DefaultField for fields that provide

the most important information about a

table.

Set to High for fields that are often used

for reporting.

Set to Low for fields that are unlikely to

be used for reporting.

Set to None for fields that should not be

shown for end-user reporting.

Try to limit the number of fields that are

set to DefaultField or High to no more

than 15.

If you have set AnalysisVisibility to

DefaultField or High, the field must be

included in at least one perspective.
ExtendedDataType Mandatory property.

All fields must be defined by using an

extended data type or an enum.

Fields that contain the same information

must share the same extended data type

or enumeration.
Other properties Other properties for fields depend on the

data type.

For integers and reals, it is a best practice

to set FieldUpdate to Absolute.

For strings, StringSize and Adjustment

should be set on the extended data type.

For reals, the CurrencyCode property must

be set if the data type extends the money

system type and the AnalysisVisibility

property has been set (for other reals,

the property is unavailable). If the data

type is derived from AmountMSTSecondary,

you must set the CurrencyCode property to

SecondaryCurrency. Otherwise, set it to

CurrencyCodeField. If CurrencyCode is set

to CurrencyCodeField, you must also set

the CurrencyCodeTable property to the table

containing that field, or to a table for

which a relationship exists from the table

containing this field, and in which a

unique index exists for the fields on the

target end of the relationship. If

54

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

CurrencyCode is set to CurrencyCodeField,

you must also set the CurrencyCodeField

property to a field by using an extended

data type derived from CurrencyCode, in the

CurrencyCodeTable.

Note:

Do not use master currency amounts

to set the CurrencyCode properties,

because master currency amounts are

always in the master currency for the

associated company.

For reals, the CurrencyDate property must

be set if the data type extends the money

or moneyMST system types (for other reals,

the property is unavailable). This

property must be set to CurrentRate or

CurrencyDateField if the AnalysisVisibility

property for the field is set to

DefaultField, High, or Low. If the

CurrencyDate property is set to

CurrencyDateField:

 The CurrencyDateTable property must

be set to the table that contains that field

or a related table in which a unique index

exists for the fields on the target end of

the relationship.

 The CurrencyDateField property must

be set to a field by using an extended

data type derived from Date.

Best Practices for Field Groups

Any field that appears in the user interface must belong to a field group. You must always

use field groups to design your forms.

Standardized group names are as follows:

 Identification

 Administration

 Address

 ModuleName (for example 'Ledger')

 Setup

 Dimension

 Misc

The Dimension field must always be the only field in a group named 'Dimension.'

Properties

Property Rules
Name Mandatory
Label Mandatory

55

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

AutoReport

You must place at least two fields in the AutoReport field group for each table, except

for parameter tables.

The fields placed there should be the ones that the user expects to print when they first

click Print on the File menu. The fields used for the TitleField1 and TitleField2 properties

are often candidates for this field group.

AutoLookup

If you do not put anything into the AutoLookup field group, the AutoLookup form will

contain the fields used in the TitleField1 and TitleField2 properties, plus the field in the first

unique index.

Extended Field IDs

Extended field IDs are used to refer to a particular field within a field array. An extended

field ID's array index is packed in the high word, and the actual field ID is packed in the low

word as shown in the following figure.

Storage of an array index and field ID in an extended field ID

The following methods are available in the Global Class to manipulate extended field IDs:

 fieldExt2Id – Converts an extended field ID to an ordinary ID.

 fieldId2Ext – Converts an ordinary field ID to an extended ID.

 fieldExt2Idx – Returns the array index of an extended field ID.

Non-array fields also have an array index and are treated as an array field that contains

only one element, meaning that their array index is 1. This index can hold the value 0 or 1.

The same field can have two different field IDs, one being 1<<16 bigger than the other.

These two IDs can be used interchangeably, and the system processes them as if they were

identical.

It is best practice to use the fieldExt2Id method to remove the array index part of a field ID,

if it is not needed.

See Also

Best Practices: Table Fields

Best Practices for Indexes

The basic rules for index design are as follows:

 Assign a unique index to each table.

 Add as few indexes as possible and maintain query performance.

 Strongly consider designating one of the indexes as the cluster index.

An error will be displayed if an index is overlapped by another index, and the other is

enabled and doesn't have a configuration key. An error will also be displayed if an index

is created with no fields in it.

Using the Key

If the table has a key, create a unique index on the fields in the key (set the AllowDuplicates

property to No). The database system ensures the uniqueness of the key.

When to Create an Index

The advantages of indexes are as follows:

 Their use in queries usually results in much better performance.

56

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 They make it possible to quickly retrieve (fetch) data.

 They can be used for sorting. A post-fetch-sort operation can be eliminated.

 Unique indexes guarantee uniquely identifiable records in the database.

The disadvantages of indexes are as follows:

 They decrease performance on inserts, updates, and deletes.

 They take up space (this increases with the number of fields used and the length of the

fields).

 Some databases will monocase values in fields that are indexed.

You should only create indexes when they are actually needed.

Take care not to add an index on something that has already been indexed. If you need a

more detailed index, you can add fields to an existing index as long as it is not a unique

index.

Tip:

It is more time-consuming to change fields at the beginning of an index than at the end

of an index. If fields in an index are updated frequently, place these at the end of the

index.

Index Hints

When you use index hints, verify them with performance tests. The optimizer might be able

to find a more efficient hint.

The following examples show finding ledger transactions in account number, transaction

date order.

Last weeks' (few days) transactions on all the (many) Profit & Loss accounts.
select ledgerTrans

 index hint DateIdx

 order by accountNum, transDate

 where ledgerTrans.accountNum >= '40000'

 && ledgerTrans.accountNum <= '99999'

 && ledgerTrans.transDate >= 26\04\1999

 && ledgerTrans.transDate <= 02\05\1999;

Transactions for the whole year (many dates) on (the few) liquid assets accounts.
select ledgerTrans

 index hint ACDate

 order by accountNum, transDate

 where ledgerTrans.accountNum >= '11100'

 && ledgerTrans.accountNum <= '11190'

 && ledgerTrans.transDate >= 01\07\1999

 && ledgerTrans.transDate <= 30\06\2000;

See Also

Best Practices for Index Properties

Clustered Indexes

Unique Indexes

Unique Indexes

This topic describes the best practices related to unique indexes.

Unique Indexes and RecID

If a table is not given a unique index (because there is no key in the application), the

system will create a unique index to get a key. The index will consist of the fields in the

shortest index definition, measured in bytes, appended with the RecId.

You can make any index unique by appending the RecId to the index.

57

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Create an index on RecId only if you need it. For example, if the RecId field is used for

lookup operations. A best practice warning appears if you create an index on RecId

without using RecId for any explicit lookup operation. A best practice warning appears if

RecId is used for a lookup when no index has been created on RecId.

If needed, create a unique index by setting the CreateRecIdIndex property to Yes. The default

is to set it to No, to save disk space and insert/update time.

Adding or Changing Unique Indexes

If you add a new unique index to a table, or change an existing one, it will cause problems

for users when they upgrade to a new version of Microsoft Dynamics AX. This will cause a

best practice error.

This error can be fixed by implementing an upgrade script called

AllowDupTablenameIndexname, or DeleteDupTablenameIndexname as a pre-synchronization

upgrade job. For example, if the new unique index on MyTable is called NewUniqueIndex,

the script should be called AllowDupMyTableNewUniqueIndex or DeleteDupMyTableNewUniqueIndex.

"AllowDup" scripts

Use this to temporarily disable the unique index. When you have removed conflicting fields,

you need to run an upgrade script to re-enable the unique index.

"AllowDup" scripts should contain the following code.
{

DictIndex dictIndex = new DictIndex(

 tablenum(TableName),

 indexnum(TableName, IndexName));

 ;

 ReleaseUpdateDB::indexAllowDup(dictIndex);

}

"DeleteDup" scripts

Use this to delete all conflicting fields.

"DeleteDup" scripts should contain the following code.
{

 ;

 ReleaseUpdateDB::deleteDuplicatesUsingIds(

 tablenum(TableName),

 fieldnum(TableName, UniqueIndexField));

}

See Also

Best Practices for Indexes

Clustered Indexes

Organizing your tables with a clustered index usually has performance advantages. The

general rules are as follows:

 If only one index is created on the table, make it clustered.

 Create a clustering index on the key on all group and main tables.

Note:

The ClusterIndex table property determines which index on a table is clustered.

Carefully consider how to cluster your transaction tables. They have many records and

receive many database operations. There is a great potential to improve speed and reduce

memory usage.

58

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

It is advantageous if records are usually inserted at the end of the index, for example, if the

index contains the current date as part of the key.

The advantages of having a cluster index are as follows:

 Search results are quicker when records are retrieved by the cluster index, especially if

records are retrieved sequentially along the index.

 Other indexes that use fields that are a part of the cluster index might use less data

space.

 Fewer files in the database; data is clustered in the same file as the clustering index.

This reduces the space used on the disk and in the cache.

The disadvantages of having a cluster index are as follows:

 It takes longer to update records (but only when the fields in the clustering index are

changed).

 More data space might be used for other indexes that use fields that are not part of the

cluster index if the clustering index is wider than approximately 20 characters).

Avoid clustering index constructions where there is a risk that many concurrent inserts will

happen on almost the same clustering index value. They will be directed to the same page,

resulting in more frequent page splits, which will result in locks and thus lead to poorer

performance. Ensure that the inserts are distributed throughout the clustering index.

Note:

Clustered indexes are referred to as Index Organized Tables in Oracle and Cluster

Indexes in SQL.

See Also

Best Practices for Indexes

Best Practices for Index Properties

The following table describes the standards and best practices in Microsoft Dynamics AX for

setting the properties for an index. For a description of each property, see Index Properties.

Property Rules
ID Always ship a table index with the same

ID as it has been shipped with before.

If you attempt to create a new index with

an ID that has already been used for an

index in Microsoft Business Solutions—
Axapta, an error occurs.

Name Use the field name for a single field

index. You must use "Idx" as a postfix for

index names.

If you attempt to create an index with a

name that has already been used for an

index in Microsoft Business Solutions—
Axapta, an error occurs.

AllowDuplicates The primary index must have the

AllowDuplicates property set to No.

There should be one unique index per

59

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

table for tables that belong to the table

groups Group, Main, and

WorksheetHeader (set AllowDuplicates to

No).
Enabled This property is usually set to Yes.
ConfigurationKey You should use a configuration key so

that the index is disabled for features that

are disabled.

Note:

If forms are opened with no specific ranges or specific sort orders, and no index is

specified in the index property of the form's data source, forms sort on the first index.

See Also

Best Practices for Indexes

Best Practices for Table Relations

You will get a best practices error if you create a relation on a table but do not add any

fields to it.

Name

The name of a relation should be postfixed with the name of the table it relates to. For

example, CustBankAccounts could be a relation on the BankAccounts table.

If there is only one relation for a table, you can just use the table name for the relation

instead.

Relations in the Data Model

Relations in the data model must be expressed in relations that are defined on the extended

data types of the fields in the tables or explicitly on the tables. Such relations must have the

Validate property set to Yes. Multi-field relations must be specified on the table.

A relation should be defined on the table that is holding the foreign key to the relating table.

The system guarantees that data entered in the database fulfills the specified relations.

The Self Relation

If a table has a key, the key must be defined by using relations. Such a relation is called the

'self relation'.

The self relation should not be set up in situations where the fields in the key are all foreign

keys (such as relations to other tables) - or more specifically, where the last field in the self

relation is a foreign key.

Navigational Relations

Navigational relations are definitions of relations that exist among data in tables where

there are no integrity constraints.

Defining a navigational relation benefits the system‘s Auto Join system when one form is
opened from within another form.

Define navigational relations to make it easy to navigate in the application by using related

information.

A navigational relation has the Validate property set to No.

The Auto Join system uses relations that are defined at both the involved tables, which

means that you only have to define a navigational relation on the one table to the other to

make the Auto Join system work both ways.

Example

60

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

The CustTrans relation on the LedgerTrans table is an example of a purely navigational

relation.

Both tables hold information about TransDate and Voucher, but neither of them are keys

that are used for validating the other.

You can open a CustTrans table-based form from a LedgerTrans table-based form. The

system will only show the CustTrans records that have the same TransDate and voucher as

the LedgerTrans record has in the form from where you started.

The relation also makes it possible to start from the CustTrans table based form located on

a record with a particular transDate and voucher and to open a LedgerTrans table based

form that will show only the records with the same TransDate and voucher.

Relationships Involving Record ID Fields

Do not create a table relationship for a single field, if the field is derived from RefRecId.

Create the relationship on the extended data type for that field instead.

Configuration Keys

The configuration key that is specified for the field in a relation must be the same key, or in

the same tree of keys, as the key used for the related field. If the external field in a

relationship can be removed, due to configuration key settings, and the field on which the

relation is set is not also removed, you will get a best practices warning.

Best Practices for Table Methods

Following are the types of Table Methods:

 Application-defined methods – created by a developer specifically for a particular table.

 System-defined methods – automatically available on every table. These methods are

inherited from the xRecord system class.

Application-Defined Methods

Use the properties available on tables and table fields rather than creating code for the

same purpose. If you do need to create a method on a table, it must be directly related to

that table.

If a table has a unique key, create the following methods:

 staticfind

 staticexist

 static checkExist

 static txtNotExist

By default, these methods run on both the client and the server. You can state this explicitly

in the method declaration (client server), but don't specify a single tier (client or server). It

is a best practice to create these methods on tables. A best practices error does not occur if

the method is not called.

System-Defined Methods

System-defined method Rules
clear Called by the kernel—you do not need to

call this method from the application.
delete Secure any related transactions.

If you have DeleteActions on one table

set to Cascade delete on another table,

61

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

System-defined method Rules

avoid writing code on the delete method

on the second table (for performance

reasons).

If you don't add code here, the database

management system can quickly do

cascading deletes by using direct SQL

deletes (DELETE_FROM).

If you do add code here, the system

creates a while select statement, and

then executes the delete method on all

child tables.

If you are deleting from the buffer, use

skipDelete.

doInsert, doUpdate, doDelete Avoid using these methods.

These methods should only be used

under strict control because they bypass

the following:

 Any validations that have been set

up.

 Any code that was written in the

insert, update, and delete methods.
helpField When manipulating an array, use the

standard methods on the Global

application class as follows:

 fieldExt2Id

 fieldId2Ext

 fieldExt2Id

For more information about the field ID of

an array, see Extended Field IDs.
initValue The call to super() assigns the default

values that you have set by using the

record template.

Use the method to assign initial/default

values to a new record.
insert Secure any related transactions with tts.

If insert is overridden, Optimizing Record

Inserts reverts to record-by-record insert.
isFormDataSource Called by the kernel—you do not need to

call this method from the application.
merge Called by the kernel—you do not need to

call this method from the application.
modifiedField Called by the kernel—you do not need to

call this method from the application.
postLoad Avoid placing any code here. Instead, use

display methods.

The postLoad method is called every time

a record is fetched from the database.

Avoid creating any code on this method

that will have an impact on performance.

For example, avoid adding code that

involves calls between the client and

62

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

System-defined method Rules

server, or any code that results in a

database operation.
reRead Called by the kernel—you don't need to

call this method from the application.
toolTipField When manipulating an array, use the

standard methods on the Global

application class as follows:

 fieldExt2Id

 fieldId2Ext

 fieldExt2Id

For more information about the field ID of

an array, see Extended Field IDs.
toolTipRecord Enables you to append additional

information to the standard tooltip text.

For example, use the toolTipRecord

method to include a message to display a

"customer out of credit" message.
update Secure any related transactions with tts.

If update is overridden, Optimizing Record

Inserts cannot be used, and automatically

reverts to record-by-record insert.
validateDelete Do not delete the super() call if you

override this method.

The method should return a Boolean—
don't throw an exception here.

validateField You should respect the task performed by

the super() call.

The method should return a Boolean—
don't throw an exception here.

When manipulating an array, use the

standard methods on the Global

application class as follows:

 fieldExt2Id

 fieldId2Ext

 fieldExt2Id

For more information about the field ID of

an array, see Extended Field IDs.
validateWrite Respect the task performed by the super()

call.

The method should return a Boolean.

Don't throw an exception here.
xml Called by the kernel—you don't need to

call this method from the application.

See Also

Best Practices for Methods

Views Best Practice Checks

This topic contains information about the best practices for setting view properties and view

field properties.

63

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

View Properties

The properties that are available for views are a subset of the properties available for Best

Practices for Table Properties. Views are read-only, and so some of the properties are set by

default and cannot be changed. Best practices are listed for some of the properties that can

be edited:

Property Rules
Name Cannot have same name as a class,

table, map, enum, or data type.

Prefix with the module name, for

example: Cust, Ledger, Proj.

Infix with a logical description of

contents, for example

ProjCommittedCostCategoryView, where

"ComittedCostCategory" is the infix.

You can use 'View' as a postfix.
Label Mandatory property.

The text value of the Label must be

unique across all tables, views, and

maps, in all languages.
TitleField1, TitleField2 TitleField1 is the title that is used on

forms that use the view as main

datasource.

TitleField2 is the secondary title and is

used on forms that use the view as main

datasource.

AnalysisVisibility, AnalysisSelection,

TypicalRowCount, IsLookup, SingularLabel

These properties are inherited from

tables, where they are used as part of the

end-user reporting system. End-user

reporting is not implemented for views,

and so any best practice errors about

these properties should be ignored for

views.

View Field Properties

Many of the properties that are available for view fields are also available as properties on

table fields. The best practice advice is the same as for table field properties.

See Also

Best Practices for Table Field Properties

Extended Data Types Best Practice Checks

The basic rules for using extended data types are as follows:

 Use an extended data type wherever possible.

 Create an extended data type for each atomic entity in the situation that your

application is modeling.

 The hierarchies you create among the extended data types should be able to pass the

"is-a" test (except for the super-grouping types and the mixed field types described later

in this topic). That is, an extended data type should be a "member" of the parent

extended data type concept. For example, SuppItemId "is-a" ItemId, but SuppItemId is

not a ClassName.

64

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 Only create subtypes when they are needed. If you want to add a field to a table or to a

dialog, do not choose a type that is too general, and just add texts for label and help

locally. Instead, create the type from the beginning and reuse it everywhere else.

 Use extended data types for setting up relations between two tables by using RecId.

 Do not directly use the system data types recID or tableID. Use the extended data

type RefRecId for types that refer to record IDs, and RefTableID for types that refer to

table IDs, or types derived from these.

For more information, see Best Practices for Extended Data Type Properties

Super-Grouping Types used as Templates for other Types

Extended data types like SysGroup and Description are used for defining a uniform user

interface in the standard application. All group table identifiers and names are initially set

up with the same width. Specialized extensions should be created for each usage.

These super-grouping types can be used for setting the length and so on for all the fields

that use their subtypes, but the intention is that they must not be counted on as

compatible.

The specialized subtypes can be disintegrated from their super-grouping types at the site of

the implementation. This allows for customized settings of each actual type.

The super-grouping types should not be used from X++ code and in fields because their

subtypes can be disintegrated. They must only be used as super types.

Mix-Typed Fields

Sometimes it is necessary to use one field to hold foreign keys to different tables that have

keys defined with completely different extended data types. In such cases, you must make

sure that the field of the foreign key can hold all possible values of all possible keys that are

potentially going to be stored in it. When you have a key for a string field, ensure that the

foreign key is at least as wide as the widest key that can potentially be held in it.

Such foreign key fields will always be supported by an Enum type field that is used to decide

what kind of key is going to be stored in the field and used in the relation setup as "This

fixed" to support the validation of the field contents and so on.

Following are examples:

 \Data Dictionary\Tables\PriceDiscAdmTrans\Fields\ItemRelation (supported by

ItemCode)

 \Data Dictionary\Tables\PriceDiscAdmTrans\Fields\AccountRelation (supported by

AccountCode)

 \Data Dictionary\Tables\LedgerJournalTrans\Fields\AccountNum (supported by

AccountType)

Configuration Keys and Relationships

The configuration key specified for the extended data type in a relation must be the same

key, or in the same tree of keys, as the key used for the related field. If the external field in

a relationship can be removed, due to configuration key settings, and the extended data

type on which the relation is set is not also removed, a best practices warning occurs.

See Also

Best Practices for Extended Data Type Properties

Best Practices for Extended Data Type Properties

In Microsoft Dynamics AX, the Best Practices for extended data type properties are listed in

the following table. For more information about properties, see Extended Data Type

Properties.

65

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules
ID Always ship an extended data type with

the same ID as it has been shipped with

before.

If you attempt to create a new extended

data type with an ID that has already

been used by another extended data

type, an error occurs.
Name The names of extended data types should

reflect the real-world items they model.

If the extended data type belongs to an

application module (such as customers or

vendors), the name must be prefixed

with the name of the module (Cust, Vend,

and so on).

If an extended data type extends another

extended data type, its name can be the

name of the parent followed by its own

specialization. If it is used in another

module, however, it can be prefixed.

If it is a data type for identification

purposes, such as for a key field in a

table, the name must be postfixed with

"Id." For example, JournalId,

InventJournalId, CustGroupId, and VendId.

Other common postfix terms can also be

used, but avoid "Code," "Num," and

"Type."

If you attempt to create an extended data

type with a name that has already been

used, an error occurs.
Label Do not set the Label property to the same

value as the HelpText property.

The label should be defined at the most

generic place, and not be duplicated

down the hierarchy. Use the LabelId

extended data type.
HelpText Do not set the HelpText property to the

same as the Label property. Make it

more descriptive and helpful.

The HelpText property should be defined

at the most generic place, and not be

duplicated down the hierarchy. For

instance, if an extended data type

inherits from an enumeration, the

HelpText property should be reused, not

duplicated. Use the LabelId extended

data type.
FormHelp Set FormHelp only when the standard

lookup system facilities are not useful.
AnalysisDefaultSort Set to Descending if the values in this

field are more commonly sorted in

66

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

descending order, for example, the date

on which an e-mail was received.
AnalysisGrouping Set to Discouraged if the values in the

fields with this type are likely to be

unique, for example, phone numbers.
DisplayLength Set to Auto.
Extends If a part of a hierarchy, it must inherit an

"is-a" type.
DisplayHeight Set to Auto.
SignDisplay Usually set to Auto. Can be set to None

(if used with DisplaceNegative).
DisplaceNegative If you need negative adjustment, the

standard value is 10.
EnumType If an extended data type is of type enum, it

is mandatory to set the EnumType property.

ShowZero If the value 0 (zero) in fields of this type

actually means null/nothing, ShowZero can

be set to No.

ThousandSeparator, DecimalSeparator,

DateFormat, DateSeparator, DateYear,

DateMonth, DateDay, TimeFormat, TimeHours,

TimeMinute, TimeSeconds, TimeSeparator

Set to Auto.

See Also

Extended Data Types Best Practice Checks

Base Enums Best Practice Checks

This topic describes best practices for using Enums. For rules about setting Enum

properties, see Best Practices for Enum Properties.

Define and use enums when a field or a variable can have a limited, fixed number of

predefined outcomes. If there might be an unlimited number of user-defined outcomes, use

a to-be-related-to table instead.

If you want to make an enum a mandatory field on a table, make the first outcome with the

value zero, as none, with the label Not selected.

Most enums can be regarded as specialized types, and should be used as they are. Some

enums (like NoYes and TableGroupAll) can be regarded as more general types that can be

specialized by using extended data types.

Enums and Constants

When you are working with enums and constants:

 Always let the constant be an enumerator.

 Never use numeric constants instead of enums.

 Never use other constants (such as other enum types) instead of enums (Booleans are

compatible with all enums).

 Do not make Boolean tests on enum fields, except where the 0/false value is clearly the

one with the false outcome.

 Never use relational operators on enums.

 Never compare or assign to enums of different types.

 Do not expect the enumerators to have a numeric value in the range of 0.<num of

enumerators - 1>.

67

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Deleting Enumerators

If you want to delete an enumerator, determine whether it has been used in persistent

storage in existing tables; old data must be taken into account.

To remove the enumerator, while saving it in a database at the customers site as a table

field:
1. Rename the enumerator to DEL_<original name>.

2. Remove its label, and replace it with the text "*** Outdated ***".

3. Add the Configuration Key SysDeletedObjects40 ('To be deleted after update') to the enumerator.

4. Remove the usage of the enumerator from the code.

5. Write a release update job that removes the data that is based on this enumerator from the

installation, probably changing it to something else, so that the total result will be consistent.

After the update, the user will not see the enumerator in the user interface.
6. Remove the enumerator in the next version so that other enumerators do not change their

numerical value: to set the UseEnumValue property to Yes, on the enum.

See Also

Best Practices for Enum Properties

Best Practices for Enum Properties

The best practices for enum properties are shown in the following table. For more

information about the properties, see Base Enum Properties.

Property Rules
ID Always ship an enum with the same ID as

it has shipped with before.

If you try to create a new enum with an

ID that has already been used for an

enum in the previous version of Microsoft

Dynamics AX, you will get an error.
Name An enum name must either indicate the

possible enum values or indicate the type

of the enum value.

Examples of enums that are named

according to the possible values are

InclExcl and NextPrevious.

Examples of enums that are named

according to the type of the enum value

are ArrivalPostingType and ListStatus.

If you try to create an enum with a name

that has already been used for an enum

in the previous version of Microsoft

Dynamics AX, you will get an error.
Label Mandatory.
Help Mandatory.

The Help property should not be identical

to the Label property; give the user a

more thorough explanation.
DisplayLength Set to Auto (to allow IntelliMorph

features).

68

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

See Also

Base Enums Best Practice Checks

Configuration and Security Keys Best Practice Checks

Configuration keys determine which features are turned on during the installation. Security

keys determine which features that a user group has access to (from the installed set of

features).

Security Keys

Microsoft Dynamics AX consists of a number of modules. For example, General Ledger,

Project, and Administration. To make it easier for an administrator to set up security keys,

they are organized the same way for all modules. Only nine security keys are allowed for

each module in the Navigation Pane.

Enterprise Portal security keys relate to the different Enterprise Portal roles (Administrator,

Sales, Vendor, and so on). Only five security keys are allowed for each role.

Using Security Keys

The security key specified for objects in the Navigation Pane must match the location of the

object. For example, items that use the BasicReports security key must be located in

Basic > Reports in the Navigation Pane.

If your code needs to check access permissions, match these locations as early as possible.

Provide a clear error message to inform the user at the beginning of a process if they do not

have permission to execute it.

Security Key Properties

Property Rules
ID Always ship a security key with the same

ID as it has been shipped with before.

If you try to create a new security key

with an ID that has already been used for

a security key in Microsoft Dynamics AX,

an error will occur.
Name One of the nine security keys on a branch

(the parent) should take the name of the

module. For example, BOM. The other

keys (up to eight more on a branch)

should have the name of the module

followed by one of the following suffixes:

Daily, Journals, Inquiries, Reports,

Periodic, Setup, Misc, or Tables. For

example, BOMReports, BOMSetup, and

LedgerPeriodic.

Enterprise Portal keys should have a

prefix of EP followed by the name of the

role. For example, EPAdmin and

EPConsultant. Additional security keys for

the role should take one of these

suffixes: Misc, Info, Report, or Task. For

example, EPAdminInfo and

EPConsultantTask.

Application Integration Framework (AIF)

keys should be the same as the name

used for the service. The format is the

module that the service is contained in,

69

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

the document name, followed by

Service. For example, in the Sales

module, SalesSalesOrderService.

If you attempt to create a security key

with a name that has already been used

for a security key in Microsoft Dynamics

AX, an error will occur.
Label Mandatory property.
AnalysisVisibility Mandatory property for top-level security

keys (keys that have no parent key).

Set to High for any key that corresponds

to a core module in Microsoft Dynamics

AX, for example, Ledger.

Set to Low for keys associated with tables

that will not usually be used for reporting.

Set to None for keys associated with

system functionality that should not be

shown for end-user reporting.

Configuration Keys

Configuration keys should be defined so that the installation can be set up with only the

features needed for each particular installation. By disabling configuration keys,

administrators can reduce the potential surface of attack, thereby helping to increase the

security of their Microsoft Dynamics AX installation.

Configuration keys are often arranged in hierarchies of functionality, mirroring the

hierarchies of functionality in the application.

Property Rules
ID Always ship a configuration key with the

same ID as it has been shipped with

before.

If you attempt to create a new

configuration key with an ID that has

already been used for a configuration key

in Microsoft Dynamics AX, an error will

occur.
Name Follow the standard Naming Conventions.

If you attempt to create a configuration

key with a name that has already been

used for a configuration key in Microsoft

Dynamics AX, an error will occur.

Table Collections Best Practice Checks

Several standard table collections have been created in the standard application:

 Batch

 CCDataLink

 Global

 InterCompany

70

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

These table collections must be updated by any solution that changes or adds new tables to

the application. By using these collections, the most common shared data or virtual

company situations can be set up at the installation.

Add tables to the Global collection if the data is not company-specific. Examples are State

and Unit.

There must not be a foreign key in a table in a virtual company, where the key is in the

(non-virtual) company.

To get the most use of the standard table collections, it might be necessary to adjust the

data model. For example, you might have to split data that would all be in one table if all

data was stored under one company.

Perspectives Best Practice Checks

This topic contains best practice information for setting perspective properties, perspective

field properties, table reference properties, and view reference properties.

Perspective Properties

Property Rules

Label

Mandatory property.

Do not set the Label property to the same

property as the HelpText property.

HelpText

Mandatory property.

Do not set the HelpText property to the

same property as the Label property; the

user should be provided with more

detailed information than is available in

the label. For more information, see

HelpText Guidelines.

ConfigurationKey

This property must have a value, to allow

the perspective to be disabled.

Perspective Field Properties

Property Rules
DataField Mandatory property. Must be selected by

using the drop-down box next to the

property.

Table Reference Properties

Property Rules
TableName Mandatory property. Must be selected by

using the drop-down box next to the

property.

71

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

View Reference Properties

Property Rules
ViewName Mandatory property. Must be selected by

using the drop-down box next to the

property.

Macros Best Practice Checks

Macro names should start with an uppercase letter.

Constant Values

For constant values that are used in multiple places in your code, you should use #define to

define a macro that has the constant value. If you must change the value later, you have to

change only the one macro definition. You would not have to find and edit every location

where the value is used.

If the constant applies beyond the range of one class and the classes that extend from it,

the macro definition must be in a macro library. Macro libraries are stored in the Application

Object Tree (AOT) under the Macros node.

X++ Statement Substitution

The #localmacro directive is the best choice when you want to substitute part or all of an X++

statement into several locations in your code. For example, a recurring part of an SQL where

clause can be reused as a macro.

Classes and Methods Best Practice Checks

This section of the SDK describes best practices for classes and methods.

 Best Practices for Classes

 Best Practices for Methods

 Best Practices for Interfaces

 Microsoft Dynamics AX Class Design Patterns

Best Practices for Classes

Use the following guidelines when you construct classes:

 The Microsoft Dynamics AX guidelines for class declarations, constructors and

destructors, methods, X++ programming, and Where to Place the Code

 The Microsoft Dynamics AX Class Design Patterns

 Commonly accepted theory within object-oriented programming, including C#

programming

Objects in the class should be stable, and they should be easy and predictable to use and

construct.

When you design your class, it should fall into one of the following concepts:

 A class that represents an object

 An action class

 A supporting class

See Also

Best Practices for Methods

72

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practices for Class Declarations

Class Properties

Property Rules
ID Always ship a class with the same ID as it

has been shipped with before.

If you try to create a new class with an

ID that has already been used for a class

in the previous version of Microsoft

Dynamics AX, you will get an error.
Name Prefix: Module short name, for example

InventUpdate.

Infix: Logical description of action

performed or type of contents, for

example InventUpdate.

Follow the general Naming Conventions.

Classes that are the basis for a

subsystem hierarchy should be postfixed

'Base'. For example: RunBase,

SysBestPracticesCheckBase.

If you try to create a class with a name

that has already been used for a class in

the previous version of Microsoft

Dynamics AX, you will get an error.

Class Declaration Layout
[public] [final] class ClassName [extends SuperClassName] [implements interface1[, interface2
..]]

Object Member Variables

Object member variables are variables in the class declaration. Create them only if the

variable cannot be created in a method. Object member variables must be the variables

holding the state of the object.

Tips:

 Do not create object member variables that do not hold the state of the object. Pass

these values as arguments.

 Do not create an object member only because a variable of that type and name is

needed in more than one method in the object. Create the variable in each place it is

needed.

Clean Up Unused Variables

Clean up unused variables in your class declaration. Right-click the class in the application

object tree (AOT) and choose Add-Ins > Check Best Practices.

Class-Wide Constants

If you have to declare some constants that will be used in more than one method in the

class or its subclasses, declare these constants in the class declaration (by using the

#define technique).

See Also

Best Practices for Constructors

Best Practice for Destructors (finalize)

73

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practices for Constructors

Following is information about how to create a clean inheritance model and minimize

problems when code is upgraded:

 Each class must have a single public construction method unless the class is abstract. If

no initialization is required, use a static construct method. Otherwise, use a staticnew…
method (the default constructor (new method) for the class should be protected).

 Each class should have at least one static construct method method.

 Each class should have at least one static new… method.

 Each class should have a new method (the default constructor). This method should be

protected.

 Create accessor methods to get and set class variables.

 Create init methods to carry out any specialized initialization tasks that should be carried

out after instantiation.

See Also

Best Practices for Class Declarations

Best Practice for Destructors (finalize)

Best Practices for new and static new... Methods

The new method is the default constructor for a class. The new method should be protected.

 Do not use it to instantiate the class. Use a construct or a static new… method instead.

It is recommended that you do not have parameters on the new method—use static new…
methods instead.

X++ does not support method-name overloading. You must create your own individually

named static new… methods with different parameter profiles. This enables you to construct

a class in more than one way. Similarly, instead of creating default parameters in a new

method, create a different static new… method for each possible parameter profile.

If you have created the new method on a subclass, call super() to carry out any necessary

initialization that might be implemented in the superclass. The call to super() should be the

first statement in the method.

static new… Methods

Create one or more static new… methods to instantiate your class.

These new methods have the following characteristics:

 Are public

 Are static

 Have a name prefixed with "new"

 Are named according to the parameter(s) they take, or logically

 Usually take only nondefault parameters

 Always return a valid object of the class's type (instantiated as well as initialized), or

throw an error

 Use a construct methods to create an instance of the class

 Use accessor methods to set the class variables

The static new… methods have a body that contains the following structure.
MyClass myClass;

;

// The construct method is used to create an instance of the class.

myClass = MyClass::construct(...);

// Use accessor methods to set the class variables.

myClass.parmOneValue(...);

74

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

myClass.parmAnotherValue(...);

if (!myClass.init())

{

 throw error("Label text explaining why object was not created");

}

return myClass;

See Also

Best Practices for Constructors

Best Practices for init Methods

Best Practices for Accessor Methods

Best Practices for Static Construct Methods

You should create a static construct method for each class. The method should return an

instance of the class.

The construct method must be:

 static

 named "construct"

In most cases the construct method should be public. If the class is instantiated using a

newParameter method, then declare the construct method as private. 73The method should

return an instance of the class and contain no other code. construct methods should not

have any parameters, or else should have the same parameters as the default new

constructor (it is recommended that you do not have parameters on new).

If your class declaration contains parameters, use a static new method as the constructor

and use the construct method within the static new method to create an instance of the

class.

For partners and customizers, this is the point to add construction functionality for new

subclasses (in higher layers), without mixing code with the construct method in the original

layer.

Tip:

You can use a code editor script to create the construct method for you. In the code

editor, press Alt + M to open the editor scripts menu, and then select template >

method > construct.

Example
static CustPaymManFileOpen construct()

{

 return new CustPaymManFileOpen();

}

See Also

Best Practices for new and static new... Methods

Best Practices for Constructors

Best Practices for init Methods

If you need to carry out any special initialization tasks after class instantiation and after the

setting of class variables by using accessor methods, such logic should be placed in a

private method called init.

init methods should be protected, and should have a void return type, or else a Boolean

return type if initialization can go wrong, so that an error can be thrown.

75

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

If you rely on the user of the class to do one of the following, then you should implement

static new... methods, so the mandatory initialization information can be supplied as specific

parameters on these methods:

 Call some specific methods to initialize some member variables, after the user has

new'ed the object, to completely initialize the object.

 Supply the parameters that are actually needed to your new method, having a lot of

default parameters

If the new method has some extra initialization logic that is always executed, you should put

that in the init method.

See Also

Best Practices for Accessor Methods

Best Practices for new and static new... Methods

Best Practices for Constructors

Best Practices for Accessor Methods

In Microsoft Dynamics AX classes, member variables are always protected; that is, they

cannot be accessed directly from outside the class. They can only be accessed from within

the objects of the class itself or its subclasses. To access the variables from outside, you

have to write accessor methods.

Accessor methods can set, get, or get and set the value of a variable.

Accessor methods can be public or protected, and should have the same name as the

member variable they access, prefixed with "parm." For example, the following accessor

method gets and sets the MyVar variable.
public MyType parmMyVar(MyType _myVar = MyVar)
{
 ;
 MyVar = _myVar;
 return MyVar;
}

If the method needed only to get the value of the variable, it would be as follows.
public MyType parmMyVar()
{
 ;
 return MyVar;
}

When variables contain huge amounts of data (for example, large containers or memo

fields), it is recommended that you use the technique in the following example. The

disadvantage of using it in all cases is the overhead of an additional method call.
container parmCode(container _code = conNull())
{
 if (!prmIsDefault(_code))
 {
 code = _code;
 }
 return code;
}

Note:

You can use a code editor script to automatically create the accessor method. In the

code editor, press ALT+M to open the editor scripts menu, and then select Template >

Method > parm. Enter the data type, and then the name of the variable.

See Also

Best Practices for Constructors

Best Practices for init Methods

76

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practice for Destructors (finalize)

The X++ language has no destructor method. A destructor method is one that is called by

the system when there are no more references to an object and the system starts to

destroy the object.

The Object class has a finalize method, but finalize is empty and the Microsoft Dynamics AX

system never calls it. You can override the finalize method if you want a method to contain

code that might otherwise belong in a destructor method. However, finalize is not called

unless your code calls it explicitly.

See Also

Best Practices for Class Declarations

Best Practices for Constructors

Best Practices for Methods

Methods should:

 Be logical.

 Do a specific task.

 Have no side effects.

 Be well structured, especially when it comes to good places for overriding and for

overlayering.

Make your methods small and logical. If you have a method that does more than one

'thing'; then consider splitting it up in two (or more) methods. It will then be easier to

override or overlayer exactly the functionality that needs to be specialized or customized.

Do not have any unused variables in your methods.

For more detail about best practices for methods, see:

 Best Practices for Method Modifiers

 Best Practices for Local Functions

 Best Practices for Table Methods

 Naming Conventions for Methods

 Best Practices for Parameters

Best Practices for Parameters

The names of the formal parameters in methods must be prefixed with an underscore.

If there is more than one parameter, list each parameter on a separate line and indent them

with four spaces. Align the types and the parameter names horizontally.

For example:
DialogField addField(
 int type,
 FieldLabel label = '',
 FieldHelp help = '')

Never assign to parameters.

Do not have unused parameters, unless you are overriding a method or implementing an

interface. You will get a best practices warning for unused parameters in private

methods, and a best practices info for unused parameters in public and protected methods

(because the parameters might be used elsewhere in the class hierarchy).

See Also

Best Practices for Methods

Best Practices for Table Methods

Best Practices for Local Functions

Best Practices for Method Modifiers

Naming Conventions for Methods

77

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Naming Conventions for Methods

Write a clear, descriptive name for your method. If one cannot be found, consider splitting it

up.

Use the general name standards, and the following preferred names for methods.

Name Description

check* A Boolean method that checks a

condition. If the condition is not fulfilled,

it must put a warning on the Infolog, and

return false.

exist Returns a Boolean that is true if a record

with the supplied key exists.

Typical use: Table static method.

find Returns a record indicated by the

supplied key.

Typical use: Table static method.

find* Finds a record in the table (where the

method is declared). The postfix is the

name of the field which is used for

accessing the table, or a logical name for

more fields.

Typical use: Table static method.

initFromTableName This buffer is initialized with values from

the buffer supplied.

One argument, which is a buffer of the

same type as that named in the method.

Typical use: Table instance method.

initParm Used for methods that set member

variables. If the method only sets some

of the variables, indicate this in a prefix

to the name, for example initParmVersDate.

is* A Boolean method that will check some

condition. If the condition is not fulfilled,

it must return false. is* cannot change

the method. Information must not be

sent to the Infolog.

parmMemberVariableName Methods used for setting and getting the

value of a member variable as a part of

an object initialization. The method

should have the same name as the

variable, prefixed with parm.

set* Used for methods that set value(s) in the

object. The name must make it clear that

the method also sets the state of some

other global members. set* methods

should be void or Boolean, signaling the

result of the set.

updateFieldName

createFieldName

If a method updates or creates a record,

reflect that in the name, rather than

calling the method setFieldName.

validate* Same as check*.

78

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Note:

Methods that have the names listed in the preceding table must carry out the tasks

described, and must not have any additional functionality. For example, there must be

no assignments in a validate, check*, or is* method.

See Also

Best Practices for Methods

Best Practices for Parameters

Best Practices for Table Methods

Best Practices for Local Functions

Best Practices for Method Modifiers

Best Practices for Local Functions

Use private class methods instead of local functions (local methods) wherever possible.

Local functions cannot be overridden, overlayered, or reused.

Local functions follow all other standards for methods—name, style, layout, and so on.

However, local functions cannot be used from outside the method where they are defined.

Local function declarations should be indented to the same level as the types in the variable

declarations. Like other declarations, they should be at the top of the code block and

separated from other code by a semicolon (;) on a blank line. An example follows.
protected void setValueQty()

{

 InventTransPosting inventTransPosting;

 InventSum inventSum;

 InventDim inventDim;

 void addPhysical()

 {

 if (inventTransPosting.isPosted)

 ...

 }

 ; // Semicolon at the end of the declarations

 // ... More code

}

See Also

Best Practices for Methods

Best Practices for Parameters

Best Practices for Table Methods

Best Practices for Method Modifiers

Naming Conventions for Methods

Best Practices for Method Modifiers

The best practices for using method modifiers are described in the following sections. For

more information, see Method Modifiers.

Client or Server

These qualifiers are used for Application Object Server (AOS) tuning, where the task is to

minimize the traffic between the client and the server. They are relevant only for table

methods and static class methods, because other methods (class instance methods) run

where their class is instantiated.

79

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 If a method is running on the server and only makes a single call to the client, it is okay

to keep it on the server. If a method makes more than one call, move it to the client

and then return it.

 If a method is running on the client and only makes a single call to the server, it is okay

to keep it on the client. If a method makes more than one call, move it to the server

and then return it.

 If you refer to both sides in your method, you must make the decision based on the

dynamics of the calls. Maybe you can restructure the method internally or split it up in

more than one method.

 Do not qualify methods as client or server if they do not use anything on that tier.

 You can use both client and server to change the execution place (to Called from) of a

class static method or to document that it is decided that a table method executes best

as Called from.

Public, Protected or Private

You must specify an access level for your method.

Only methods that can be used safely by the user of the class or table should be declared

public. Even though methods are public by default, it is best to explicitly declare them as

public, to show that they are intentionally public.

These access level specifiers affect only the compilation. You can still call a private or

protected method at run time by using a noncompile time-checked call technique, so be

careful.

Static

It may be appropriate to make a method static if one of the following apply:

 It does not use the instance member variables or fields that are defined for the class.

 It is not going to be overridden.

 It runs better on a different tier than the object itself.

 It is related to the class or table, but it does not have its origin in a single object

(instance).

One advantage of static methods is that you do not have to spend time creating an object;

the method can simply be called.

Note:

Methods that are not static are referred to as "instance methods", "normal methods",

"object methods", or simply "methods".

Final

Unlike other methods, final methods cannot be overwritten.

Abstract

Use the abstract qualifier when a method has to be implemented in a subclass. Even if it has

no effect, it serves as documentation.

Abstract methods can only be declared as empty:
abstract public container pack()
{
}

See Also

Best Practices for Methods

Best Practices for Parameters

Best Practices for Table Methods

Best Practices for Local Functions

80

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Microsoft Dynamics AX Class Design Patterns

The Microsoft Dynamics AX class design patterns are as follows:

 Data + Engine class pattern

 Main class pattern

 RunBase class pattern

 Strategy class pattern

See Also

Best Practices for Class Declarations

Best Practices for Constructors

Frameworks Introduction

Main Class Design Pattern

Use the main class design pattern whenever a class is called from a menu item.

Do not call the main method explicitly from the code; call it implicitly it from a menu item.

Typically, you would:

 Instantiate the class by calling the static construct method.

 Call the prompt method to create a dialog.

 Call the run method, if the user clicks OK on the dialog box.

Most classes that have a main method are candidates to be implemented by the RunBase

framework.

Tip You can use a code editor script to create the main method. In the code editor, press

Alt + M to open the editor scripts menu, and then select template > method > main.

See Also

Best Practices for Static Construct Methods

Strategy Class Design Pattern

The Strategy pattern is useful if you have to do different things in a similar way; for

example, if you have a lot of similar switch statements or if statements in your program.

A specific example would be similar switch statements, as follows:
...
// First operation
switch (_direction)
{
 case up:
 ...
 case down:
 ...
}
...
...
// Second operation
switch (_direction)
{
 case up:
 ...
 case down:
 ...
}

In this case, you probably have a situation where you can split up your code in a class

hierarchy like this:

81

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

You should construct a correct direction object at the beginning of your code, and then work

on the correct direction object in an abstract way after, as follows:
Direction direction = Direction::construct(_direction);
...
direction.firstOperation();
...
...
direction.secondOperation();
...

The correct process will occur as the direction object is instantiated to the correct situation.

See Also

Microsoft Dynamics AX Class Design Patterns

RunBase Class Design Pattern

To create a job or an Action class - a program that carries out processes, such as accepting

parameters from the user and then updating records in the database - you use the RunBase

framework.

The RunBase framework supports you by providing all the functions needed in such a job,

and by providing the user (and the programmer) with a consistent interface.

Candidates

Most classes with a main method are candidates for being implemented with the RunBase

Framework.

See Also

Microsoft Dynamics AX Class Design Patterns

Best Practices for Interfaces

The names of interfaces should end with the suffix, -able. For example: SysMergeable and

SysComparable. Do not prefix interface names with "i", as in iSysComparable.

SysPackable

Classes that implement SysPackable must have exactly the same contents (the same

variables and the same types of variables), or else you must change the version number of

the container. To change the version number of the container, write the following in the

class declaration:
#define.CurrentVersion(2)

(Use a number other than 1.)

SysUnitTestable

Classes that implement SysUnitTestable must have a name postfixed with 'UnitTest'.

82

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Pack-Unpack Design Pattern

Use the pack-unpack pattern to save and/or store the state of an object, and then later

reinstantiate the same object.

Situation

An object has a particular state. You want to work with the same object at a later time or

another place (such as on another tier).

Solution

Make it possible to save the state of the object in a form that can be persistently saved or

transported to another tier. Moreover, make it possible to reinstantiate the object.

For Table objects (records), this is straightforward because they are enabled for persistence

and are automatically transported between client and server.

For class objects, create a pack method to read the state of the object and return it in a

container suitable for saving or transporting between tiers. Reading the state of the object

implies collecting the value of all its members. If the members are tables (records, cursors,

temporary tables) or classes, it must also be possible to read their state.

Likewise, create an unpack method that takes the packed state and reinitializes an object

with it. Construct the object before creating an unpack method.

You can also create a static create method that instantiates a new object. Initialize the new

object with the packed state information, and return it ready for use.

Implementation

To implement the pack-unpack pattern, create the following methods.

public container pack()

Returns the state of the object as a container.

According to the persistent data storage design pattern, the first entry is a version number

that describes the version of the saved structure.

Example:
container pack()

{

 return [#CurrentVersion,#CurrentList];

}

Where the macros are defined in the classDeclaration:

public class InventAdj extends RunBaseBatch

{

 InventClosing inventClosing;

 #DEFINE.CurrentVersion(1)

 #LOCALMACRO.CurrentList

 InventClosing

 #ENDMACRO

}

public boolean unpack(container _packedObject)

The unpack method takes the saved state of the object and reinitializes the object with it. It

reinitializes the object members according to the values in the container, taking the

supplied version number into account.

The method can return a Boolean that signals the result of the initialization process.

The object should be only instantiated before a call is made to the unpack method.

Example:
public boolean unpack(container _packedClass)

{

 int version = conPeek(_packedClass,1);

 ;

83

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 switch (version)

 {

 case #CurrentVersion:

 [version,#CurrentList] = _packedClass;

 break;

 default:

 return false;

 }

 return true;

}

public void new()

The constructor (the new method) of the object is expected to take no parameters. It should

be possible to instantiate the object without knowing anything about it except its class type,

and then completely reinitialize it by using the unpack method.

A typical example would be to not have an explicitly defined new method, but to use the

standard new method without parameters.

public static <YourClass> create(container _packedObject)

You can also create a create method that does the following:

 Instantiates a new object (by calling the constructor)

 Initializes it with the saved state of the object and reinitializes the object with it (by

calling the unpack method, which can then be set to private)

 Returns the reinitialized object of your class

For example, this is done in the List::create system class method.

Limitations

An object cannot be packed unless all the members it contains can be packed.

If objects contain table or class members, it must be possible to pack these members and to

return them to the same state when unpacked.

A reinstantiated object is not the same object as the one that was saved. It is simply an

object of the same class whose members contain the same information.

Known Uses

 All RunBaseBatch descendants. The Batch system uses the unpacking possibility.

 QueryRun

 Microsoft Dynamics AX collection classes (formerly called foundation classes)

Forms Best Practice Checks

This topic describes the best practices for standard view and data-entry forms. Lookup

forms are described separately. Best practices for form properties are described in the

topics that are listed in the See Also section.

Form Name

The name of a form should be identical to the name of the table that is used as its data

source.

Tabbed Pages

All forms should automatically open on a tabbed page.

All data entry and view forms that use tables with the table groups—group, main, or

transaction—must have two tabbed pages :

 Overview with a grid, (@SYS9039)

 General with non-grid table data groups, (@SYS2952)

84

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

These tabbed pages enable the user to choose between the spreadsheet style of the grid,

and the form style of the non-grid view. If you do not use the previous labels for the first

two tabs of a data entry form, a best practices warning appears.

A form should open on the first tabbed page. The Tab property for the Tab control in your

form design must be set to Auto.

Do not set the HelpText property for a TabPage form or a group on a tabbed page unless the

form is a wizard, or unless the group has the FrameOptionButton property set.

Buttons

Place buttons in a ButtonGroup control with the following property settings:

 Left - Set to Right edge

 ArrangeMethod - Set to Vertical

Buttons and their associated menu items must fully support multi-selection in the grid or

grids.

Command buttons should not be defined.

Keep Default Settings

When you design forms, their properties should retain their Auto or Default settings. This

is the primary form-design rule.

Many aspects of form design are defined in the data source table. They shouldn't (usually)

be overridden in the form. These form-design aspects include the following:

 Relations

 Delete actions

 TitleField1 and TitleField2 properties that are used by the caption method

 Labels used as captions on field groups, on controls, or on the table field group controls

 Order of the fields in field groups is reflected when the field groups are displayed on the

forms

 AutoReport field group that specifies the initial print layout

The first index is used for sorting in the form, unless this behavior is overridden.

Enable IntelliMorph Features

You should enable all IntelliMorph features in forms. Following are examples of how to

enable these features:

 Construct the form by using a menu item and a MenuFunction object. This is automatically

done when you use menu items.

 Prioritize your data design elements (controls) as follows:

 Table field groups with the AutoDataGroup property set to Yes

 –or–

 Table field groups (with the AutoDataGroup property set to No)

 –or–

 Table fields

 –or–

 Display and/or edit methods—preferably from the data source table

 –or–

 Controls that are based on extended data types

 Ensure that labels, and to a certain extent HelpTexts, are not overridden on the

controls—especially not with the same value as the one supplied from the Field, the display

and/or edit methods or the extended data type.

Ensure that the Caption is not overridden on the Table field groups bound group controls,

and especially not with the same value that is supplied from the Table field group.

85

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Form Size

Forms must have the ability to be resized—the Width and Height properties on the Tab control

and the Grid control must be set to column width/column height.

A form must fit a screen that has a 1024 x 768 resolution. Because the status bar, caption,

and toolbars take up about 100 pixels vertically, and the menu bar in the Navigation Pane

takes up 200 pixels, the maximum size of a form should be 824 x 668. If you exceed this

size, a best practices warning appears. If you exceed 1080 x 924, a best practices error

appears.

Form Initialization

If a form cannot be started (initialized) correctly, you must inform the user and end the

process. For example, if the form has to be started by using certain parameters and is not,

throw an error as soon as possible. Provide a straightforward, descriptive error message

that states the problem. The following example shows an error being thrown.
void init()

{

 if (!element.args()

 || element.args().dataset()

 != tablenum(BOMCalcTable))

 throw error(Error::MissingParameter(element));

 super();

 ...

}

Printing from Forms

By default, printing is available from all forms with a data source through the Auto Report

facility.

If a special report has been created to support general printing from the form, implement it

on the form's user interface. Override the standard print method on the form. The range

(amount) to print must by default correspond to what is on the screen. The report prints

when the Print icon is activated—an explicit Print button should not be added to the form.

If (in rare cases) a Print button is needed, implement it by using a Print CommandButton

control.

Implement the call to the report by using its menu item (depending on the functionality

needed) as shown in the following example.
void print()

{

 new MenuFunction(menuItemOutputStr(...),

 MenuItemType::Output).run([...]);

}

Reports with more specialized functionality should be added to the form by using menu item

buttons.

Dimension Fields

If the table has a dimension field (a field based on the Dimension extended data type) that is

going to appear on the form, do the following.
1. Create a separate tabbed page named "dimensionTab," positioned as the last tabbed page.

2. Place the Dimension field group as an auto data group on the tabbed page. The FrameType

property on the group must be set to None (to avoid duplicated text: A Dimension tab with a

Dimension group).

The label for all the dimension names is: @SYS14926, en-us: "Dimension."

86

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

ActiveX Control Security

ActiveX controls can be a security threat. Note the following security issues:

 ActiveX controls run in the same security context as the Microsoft Dynamics AX client.

 ActiveX controls that are used by Microsoft Dynamics AX should not be marked as safe

for scripting.

If an ActiveX control in Microsoft Dynamics AX has a method with a signature and a name

that are equal to a public method that is exposed by the ActiveX control, the X++ method is

always called when it is referenced from X++ code.

For more information about ActiveX controls and security, see

http://msdn.microsoft.com/workshop/components/activex/sec_activex.asp.

Image and Animation Files

To help prevent attackers from modifying the contents of image and animation files that are

used by your form, ensure that access control lists are applied to the image and animation

files.

See Also

Best Practices for Form Data Source Properties

Best Practices for Form Design Properties

Best Practices for Form Control Properties

Best Practices for Lookup Forms

No Code in Forms

No Code in Forms

Do not place code in a form unless you cannot place it in a class or in a table method. Code

written on forms cannot be reused and is difficult to customize.

A class that processes all the logic in a form should have the same name as the form with

"Form" as the suffix. If you have a complex form, create a class for server-related tasks.

This class should have the same name as the form, but with "Server" as the suffix.

If you have code in the form, the code should be for making only simple changes to the

appearance of the form or to the form‘s query. Try to place the code on the form or on the
data source. Place code directly on controls only when you are absolutely certain that there

is no other solution, and then use the AutoDeclaration property on these controls.

Reasons for Removing Code from Forms

 Forms are entirely client-based. There should be no code in them that manipulates the

database (business logic). The code should be removed from the form and placed on the

server.

 Putting the business logic in methods on classes and tables makes it possible to

customize, method by method. As a result, only the customized methods are overlayered.

Methods on classes and tables are stored individually in the Application Object Tree (AOT),

and thus can be individually overlayered. Because a form is a single layered application

object, changes to the business logic in a form overlay the complete form—not just any

customized method. This results in unwanted, redundant application object content in the

upper layer.

 Code placed in classes and tables can be reused in other application objects. Code inside

a form is not practical to use—it is difficult to access, and there is no compile-time control.

 The physical implementation of Web forms is very different from ordinary forms. If your

business logic is not dependent on the look and implementation of a form, it is much easier

to duplicate the form as a Web form.

 When you want to enable your business logic for COM, it is essential that the business

logic is not constructed in a form-dependent way.

87

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

See Also

Forms Best Practice Checks

Best Practices for Form Data Source Properties

Form data sources should be set up to use AutoJoin System of Microsoft Dynamics AX. The

first record in the data source should be shown when the user opens the form.

Best practices for some of the properties are shown in the following table. For a description

of all form data source properties, see Form Data Source Properties. For lookup forms, refer

to Best Practices for Lookup Forms. You can also set properties on datasource fields.

Property Rules
Name Give the data source the same name as

the underlying table. If there is more

than one data source with the same

table, give the data sources individual

logical names that describe their

purposes.
Table Should be identical to Name.
Index If you specify an index here, it will be

used as an index hint on each of the

queries to the database. It will specify an

access path and a sort order for the

records shown in the form, based on this

data source.

The initial sort order for the records

shown in a form is prioritized by the

system:

 If sort fields are added to the data

source query, the sort specification is

used.

 If an index is specified in the index

property on the data source, the sort

order that is implicitly specified in that

index is used.

 If the data source is auto joined with

another data source, the system finds the

most adequate index for this join and

sorts the data according to that index.

 If nothing else is specified, the sort

order is the one that is implicitly specified

in the first index (the one with the lowest

ID) on the table that is used in the form

data source.

When no index hints are specified, it is up

to the database management system to

find an applicable access path that is

based on the information in the supplied

query.

The sort order can be changed by the

user, by using the different sort options

that are presented on the controls and in

the query dialog.

88

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

AllowCheck, AllowEdit, AllowCreate,
AllowDelete

Usually should be set to Yes, but you

should decide what is appropriate for

your application. Set to No for lookup

forms.

Note:

AllowCheck on joined data sources

(inner, outer, exist, not exist) must be

set to Yes (which is the default) to

enforce security checking across all

data sources.
StartPosition Unless your form is used for postings, the

StartPosition property should be set to

First.
AutoSearch Must be set to Yes.
AutoNotify Must be set to Yes.
AutoQuery Must be set to Yes.
OnlyFetchActive This property is designed to be used in

lookup forms, but it can be used safely in

any view-only form with no code or

buttons to activate other application

objects. Only the fields that are controls

on the form will be selected from the

database, meaning that the form will

open more quickly
JoinSource Set this property only when two or more

tables are used as the data source and

you want to join them.
LinkType Must be set to Delayed for the outer

(externally linked) data source.

See Also

Best Practices for Form Control Properties

Best Practices for Form Design Properties

Forms Best Practice Checks

Best Practices for Form Design Properties

The primary rule for form design is that all properties should keep their Auto or Default

setting. Many form design properties also exist on the individual controls, for example the

Width and Height properties.

Also refer to the description of design properties in:

 Form Design Properties (a general description of the properties)

 Lookup Forms (best practice for lookup forms)

Property Rules
Left, Top, Width, Height Leave these properties set to Auto.
Caption Mandatory property , unless the Visible

property is set to No, or the form is a

lookup form.

Set this property to the same value as

the label for the table underlying the

89

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

primary data source on the form (the one

set in TitleDatasource property).

The label on the menu item that is used

for activating the form, the caption of the

form, and the table label must be in

balance.
TitleDatasource Set this property to the primary data

source in the form.

The form title consists of the value of the

Caption property, and, if a TitleDatasource

is specified: a dash and the result of the

caption method on the table underlying

the specified data source

Examples:

 Customers - Customer Account:

4010, The Lamp Shop

 Customers - Customer Account:

5000, New Record

When a user creates a new record, the

title will be appended with the text 'New

Record'.
Frame Typically, the Frame type is Standard.

The other types do not have a caption

and are typically used when a new form

is opened from within a form (for

example, when a form is opened when

the user clicks a lookup button). Set to

Border for lookup forms.
WindowResize Keep the default setting.
WindowType Set to Standard, except for lookup

forms, where it should be set to Popup.
HideToolbar Set this property to No for all data entry

forms.

Set this property to Yes for lookup forms.

Columns Keep the default setting (1) for all data

entry forms.
SetCompany If the SaveDataPerCompany property on a

table is set to Yes, then the SetCompany

property on a form design that uses the

table as a data source must also be set to

Yes.

See Also

Forms Best Practice Checks

Best Practices for Form Control Properties

Best Practices for Form Control Properties

The basic rule for Form Control Properties is to use the system's Auto property values

wherever you can. This ensures a uniform application interface and reduces repetitive

90

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

work. For example, the Auto settings for Dimension properties such as Top, Left, Width, and

Height make allowances for preferences in font, font style, font size, and so on, and allow

the dimensions to change dynamically when a different font is selected.

Specific rules for a few control properties are described in the following table.

Property Rules
Name All control names should be unique on a

form.
AutoDeclaration Use the AutoDeclaration feature on

controls that you address for

programming from X++ code in the form.

AllowEdit If AllowEdit is set to No, set it as close to

the table field as possible. The AllowEdit

property is on:

 Each field in a table

 Each field in a form data source

 The form data source (the table)

 Each control on a form, on container

controls like tabs, and on individual

controls
AutoDataGroup Set the AutoDataGroup to Yes on Data group

on forms, if possible. This is

recommended for performance reasons.
HelpText Mandatory property.
Label Mandatory property, for controls where

this property appears.

Deactivating Fields/Controls

Fields that the user should not be able to change by using form controls should be set as

shown in the following table .

Property Value Description
AllowEdit No Set to No to stop the user

from changing the value.
Skip Yes Set to Yes if you don't want

the user to enter the field

while they tab through the

form.
Enabled Yes Set to Yes by default. This

allows the user to navigate to

the field to see the Help text

or to copy the field value.

See Also

Best Practices for Form Data Source Properties

Best Practices for Form Design Properties

Forms Best Practice Checks

91

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practices for Lookup Forms

Create lookup forms only in situations where the system does not create them

automatically. Alternatively, you can design lookup forms by using the AutoLookUp table

field group. The form name must be postfixed with 'Lookup'.

If you only need to specify the fields or the query or both, use the functionality in the

SysTableLookup class, if possible.

Manually created lookup forms must have the same functionality and general appearance as

the lookup forms that are automatically generated by the system.

 They must support a query expression in the looked up control.

 They must support "Auto find"/Focus on the rows that are found as characters are keyed

in.

Manually created lookup forms can be activated from the FormHelp property on extended data

types or from the lookup method on form controls.

Run Method

The code in the run method performs the actual filtering. To avoid flicker in the form, the

default query execution is disabled in case of filtering.

In the example below, Common_ds is the datasource in the lookup form and Common_LookupField

is the control in the lookup form from which the lookup value is selected (the one you used

for the ‗this.selectmode‘ call).
void run()

{

 FormStringControl callerControl =

 SysTableLookup::getCallerStringControl(element.args());

 boolean filterLookup = false;

 ;

 if (callerControl.text() && callerControl.hasChanged())

 {

 filterLookup = true;

 Common_ds.autoSearch(false);

 }

 super();

 if (filterLookup)

 {

 Common_ds.research();

 Common_LookupField.filter(callerControl.text());

 }

}

Properties

Property Property set on: Value Description
AllowCheck Data source No Security check must

be switched off.
AllowEdit Data source No Not allowed in lookup

forms.
AllowCreate Data source No Not allowed in lookup

forms.
AllowDelete Data source No Not allowed in lookup

forms.
OnlyFetchActive Data source Yes The form will select

only the fields that are

92

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Property set on: Value Description

on the controls in the

form. Since there are

no codes in lookup

forms, they will open

faster because the

result set is smaller.
Frame Design Border No caption will appear

above the form.
WindowType Design Popup -
ShowRowLabel Grid No -

See Also

Forms Best Practice Checks

Best Practices: List Pages

Microsoft Dynamics AX conducts a best practices check of new or modified list pages. The

best practice checks seek to establish a common look and behavior for all list pages. For

more information about best practice checks, see Best Practices for Microsoft Dynamics AX

Development.

Best Practice Checks

The following table lists the best practices error messages for list pages.

Message Message type How to fix the error or warning

List Pages must have a name

that ends with "ListPage".

Warning Append ListPage to the value

of the form Name property.

List Pages must have their

TopMargin property set to

"Auto".

Warning Set the value of the

TopMargin property in the

form Design node to Auto.

List Pages must have their

BottomMargin property set to

"Auto".

Warning Set the value of the

BottomMargin property in the

form Design node to Auto.

List Pages must have their

LeftMargin property set to

"Auto".

Warning Set the value of the

LeftMargin property in the

form Design node to Auto.

List Pages must have their

RightMargin property set to

"Auto".

Warning Set the value of the

RightMargin property in the

form Design node to Auto.

List Page datasources must

have their AllowEdit property

set to "No".

Warning Set the value of the AllowEdit

property in the list page data

source to No.

List Page datasources must

have their AllowCreate

property set to "No".

Warning Set the value of the

AllowCreate property in the

list page data source to No.

List Page datasources must

have their StartPosition

property set to "First".

Warning Set the value of the

StartPosition property in the

list page data source to First.

A List Page must have a

single Action Pane.

Warning If the list page does not

include an ActionPane, add

an ActionPane control to the

Design node of that list page.

93

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Message Message type How to fix the error or warning

If the list page includes more

than one ActionPane, remove

all except one ActionPane

control from the Design node

of that list page.

An Action Pane should not be

present on a form that isn't a

List Page or Content Page.

Warning Remove the ActionPane

control from the Design node

of the form. Or, set the

WindowType property in the

Design node of the form to

ListPage or ContentPage.

A List Page must have a grid. Warning Add a Grid control to the

Design node of the list page.

List Page grids must have

their AllowEdit property set to

"No".

Warning Set the value of the AllowEdit

property of the Grid control to

No.

List Page grids must have

their Width property set to

"Column width".

Warning Set the value of the Width

property of the Grid control to

Column width.

List Page grids must have

their Height property set to

"Column height".

Warning Set the value of the Height

property of the Grid control to

Column height.

List Page grids must have

their ShowRowLabels property

set to "Yes".

Warning Set the value of the

ShowRowLabels property of

the Grid control to Yes.

List Page grids must have

their Datasource property set

to a valid datasource.

Warning Set the value of the

DataSource property of the

Grid control to the name of a

data source for that list page.

List Page grids must have

their DefaultAction property

set to a button on the form.

The DefaultAction property

should normally point to a

button that performs the

"Open" action.

Warning Set the value of the

DefaultAction property of the

Grid control. Specify the name

of an action pane button.

List Page Action Panes must

have their Width property set

to "Column width".

Warning Set the value of the Width

property of the ActionPane

control to Column width.

A document handling button

on an Action Pane should use

the label @SYS114630 for its

Text property.

Warning Use the specified Label ID

value for the Text property of

a document handling button.

A document handling button

on an Action Pane should

have its Name property set to

"Attachments".

Warning Set the value of the Name

property of the document

handling button to

Attachments.

All buttons on an Action Pane

should have their

ShowShortcut properties set

to "No" to suppress the

Warning Set the value of the

ShowShortcut property of the

action pane button control to

No.

94

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Message Message type How to fix the error or warning

addition of extra characters

for mnemonic usage.

List Page controls must not

have any vertical spacing

between them.

Warning Set the value of the

VerticalSpacing property of

the control to Auto or 0. Use

Auto whenever possible.

List Pages must have their

TitleDatasource property set.

Warning Set the value of the

TitleDataSource property in

the form Design node to the

name of a list page data

source.

List Page Action Panes must

have their VerticalSpacing

property set to zero.

Warning Set the value of the

VerticalSpacing property of

the ActionPane control to

Auto or 0. Use Auto whenever

possible.

Reports Best Practice Checks

Reports are one of the central places where IntelliMorph is active. Best practices for reports

concern keeping the default settings for properties.

When you design a report, you often do not know much about the environment in which the

report will be executed, such as:

 The size of the paper in the user's printer.

 The length or the contents of the labels that are used in the user's installation or

language.

 Which fields are disabled due to security keys and configuration keys.

 The length of the fields (extended data types) in the user's installation.

 The sort order of the data sent to the report.

 Whether the user only wants to print the (sub) totals.

 What font and size the user has set up as report defaults.

 How many records there are in the tables from which the report gets its data.

Note:

You must use labels for the report's Caption and Description properties , unless the report

is country/region-specific. This enables the report to be translated more easily.

For specific rules about reports, see:

 Best Practices for Report Design

 Best Practices for Report Properties

 Best Practices for Use of Reports

Best Practices for Report Design

A report can have two kinds of design:

 Auto (AutoDesignSpecs)

 Generated (Design)

Use Auto design for all 'normal' reports.

Use a Generated design for reports with special functional requirements that cannot be

implemented with Auto designs or where the design is determined externally. For example:

 Reports that are forms with externally-determined layouts where the information is

expected to be placed in very specific positions.

95

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 Reports that are forms (invoices and so on) where the design should probably be

adjusted to the customer's needs at the installation. Most controls should have their

positions fixed (not set to Auto) to simplify moving the controls by using the Visual Report

Designer.

See Also

Best Practices for Report Properties

Reports Best Practice Checks

Best Practices for Use of Reports

Best Practices for Report Properties

This topic describes the best practices for:

 Report Properties

 Report Design Properties

 Report Section Properties

 Report Control Properties

Report Properties

Property Rules
Name The name must comply with general

Naming Conventions.

Prefix: Module short name

Infix: Logical description of contents

Report Design Properties

Property Rules
Name Call the report 'Design', or use a logical

name if you have more than one design.
Caption Use a label to indicate the contents or

purpose of the report. If the report is

country/region-specific, you do not have

to use a label.
Description You must use a label for the Description

property, unless it is a country/region-

specific report.
ReportTemplate Use one. In generated design reports,

Report Templates are only used at

generation time. Template-generated

sections must be manually maintained

afterwards.

Use the following predefined templates:

 Internal use External use

List InternalList ExternalList

Form InternalForm ExternalForm

Orientation Typically set to Auto to exploit all the

IntelliMorph features.

Set it to Portrait or Landscape for a report

96

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

with specific format requirements.

Report Section Properties

Property Rules
ColumnHeadingStrategy Use the default, WordWrap, if possible.

Report Control Properties

Do not change the properties of report controls for controls that are based on fields,

extended data types, and display methods, with respect to

 Width

 Label

 Width of label

 Formatting information, such as the kind of decimal point, and so on

If you change these report controls, you will not be able to use IntelliMorph.

The Left and Top properties should be set to Auto on most reports, but they should have a

specific value on reports that are likely to be adjusted to the needs of individual customers.

See Also

Reports Best Practice Checks

Best Practices for Use of Reports

Best Practices for Report Design

Best Practices for Use of Reports

Use of Display and Edit Methods

Security cannot be enforced on display and edit methods that are used in reports, when the

method is declared on the table in the application object tree (AOT). If a display method

returns data from another table (or another row or column in the same table) it can result

in unwanted information disclosure. Therefore you will get a best practices error each

time you use a display or edit method in a report. You should evaluate whether each of

these is a security threat, and fix them if they are, or disable the error if there is no threat.

For more information, see Security on Display and Edit Methods, and "Disabling Individual

Warnings and Errors" in Setting Up Best Practices Checks.

RunBaseReport

Reports should use the RunbaseReportStd framework to make it possible to run the report

in batch and to give it a consistent user interface. An example can be seen in the

tutorial_RunbaseReportStd report.

The menu item that is used to start the report is used to control on which tier (client,

server, called from) the report should run.

Menu Item

A Menu Item for a report should be an Output Menu Item. Name the Output Menu Item

after the report, or name it logically.

Consider where the report should run (Client, Server, Called), and set the property on the

menu item (or the class) starting the report.

Apply the same label for the Output Menu Item, the caption of the report, and its dialog.

See Also

Best Practices for Report Properties

Reports Best Practice Checks

97

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practices for Report Design

Queries Best Practice Checks

Queries can be seen as a class interface for creating select statements.

Use a query in place of a select statement when the structure of the "select" (query) is not

known until run time, or when the user should be able to specify the ranges. In other

situations, use a select statement. Select statements are often easier to read, and they are

much more compile-time stable.

Queries are embedded in Forms, Reports and RunBase jobs and should always be used with

these application objects, unless there are good reasons not to.

Queries are very flexible. Everything can be specified at run time, but specify as much as

possible before run time.

Create queries in the Application Object Tree (AOT) where possible, instead of building them

in code.

Use intrinsic functions everywhere possible to enable compile-time checking of code.

The range of a query can be specified under program control by using two different

techniques, the normal one and the query range value expression. Both take a string as an

argument that is not evaluated until run time. The string must fulfill certain syntax

restrictions and be as compile-time stable as possible.

Normal Query Range Values

Always use the SysQuery::value method when you are programmatically assigning an atomic

value to a query range.

Always use the SysQuery::range method when you are programmatically assigning a value

range to a query range. The range method will supply the needed ".." operators.

Always use the SysQuery::valueEmptyString method when you want to have a range which

must have a blank value.

Always use the SysQuery::valueUnlimited method when you want to have a completely open

range.

Query Range Value Expressions

Only use the Using Expressions in Query Ranges if the normal query range values cannot be

used.

Be aware that query range value expressions are evaluated only at run time (so they are

not checked at compile time).

Because the contents of the Query range value expressions should look like X++, you

should be careful to format the different data types correctly. Use the strFmt system function

or queryValue/queryRange for this. queryValue and queryRange are methods on the Global class.

Place the expression in a range that is defined on the most relevant of the involved fields.

See Also

X++ Standards: select Statements

Jobs Best Practice Checks

Jobs work well for testing various things. They are not intended to be shipped as a part of a

solution, and it is not possible to check them in to the application object tree (AOT) version

control system. (You can only use them locally on your computer.)

Menu Items Best Practice Checks

Create menu items for runnable application objects for placement in menus and as buttons

on forms.

98

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Create the menu item in the appropriate conceptual folder as follows:

 Display - Must be used for runnable application objects that primarily present forms,

dialogs, and so on, to the user.

 Output - Must be used for runnable application objects whose primarily function is to

print a result.

 Action - Must be used for runnable application objects whose primarily function is to do

some kind of a job, such as creating or updating transactions in the database.

Menu Item Properties

The following table describes the best practices for menu item properties, which are in the

same order that they appear in the Application Object Tree (AOT).

Property Rules
Name The Name property should have the same

name as the object that the menu item

opens.
Label Use a label.

Use the same label that is used for the

Caption property of the object that the

menu item opens.
RunOn Ensure that you set this correctly. Client

is the default value.
ConfigurationKey Use the key for the module it belongs to.
CountryConfigurationKey For only country/region-specific

functionality, use the CSE

(country/region-specific engineering)

configuration key.
WebConfigurationKey Use the key of the Web application it

belongs to (if any).
SecurityKey Mandatory unless:

 The NeededAccessLevel property is set to

NoAccess

-or-

 The menu item is used in the Tools

menu.

Use the security key that matches its

location in the Main menu. For example,

the AssetBudget menu item is used in

General Ledger > Inquiries. The

security key is LedgerInquiries.

If a menu item is used on a button inside

a form, the security key must be

<module>misc.
NeededAccessLevel This property sets the access level

needed to start the menu item.

Warning:

If you set the NeededAccessLevel

property to NoAccess, every user has

full access to the item.

Set to View for output items and most

display items. A Best Practices error

99

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Property Rules

occurs if you set NeededAccessLevel to

NoAccess for output items and display

items.

Set NeededAccessLevel to Edit, Create, or

Delete for action items.

For menu items that run classes, see the

following section.

NeededAccessLevel for Menu Items That Run Classes

You must set the NeededAccessLevel property to the appropriate level for every menu item

that runs a class. There are no access level settings on individual classes.

Determine the access level required for a class by using the following criteria:

 Decide what the logical function of the menu item is (the functionality from the users'

point of view).

 Ascertain that when an administrator sets the permissions for a security key on a user

group, the menu items appear/disappear as expected.

 Look at all the tables accessed in the class, and find out which is the "highest" access

type, and then use it for the required access level:

 The "highest" access type is Delete.

 Add is lower.

 Edit is lower than Add, and so on.

Do not include "service tables," such as SysLastValue, in the analysis.

 A class that is changing a status ("Edit") for several records and is simultaneously

creating transactions ("Add") to reflect that change can have the NeededAccessLevel set to Edit

because that is the primarily logical function of the class.

Another class that has the same function, where the status change is a logical Delete, can

have the NeededAccessLevel set to Delete. This is partially checked by the

checkMenuItemActionAccessLevel method in the SysApplCheck class.

Web Best Practice Checks

When you create HTML documents or contents from X++ code, use the following standards.

Formatting Strings with Web Tags

The Web class has a set of functions to format and output strings with Web tags. Use these, if

possible.

To build strings:
1. Construct the user interface string by using the strFmt system function.

2. Insert HTML tags.

For example:
strFmt('<h2>%1</h2>',strFmt("@SYS4711",accountNum))

Where to Place the Code

Put logic in classes (and tables), so it can be reused in a new context, like a Web page.

Transactions

Keep locks on shared records to an absolute minimum. Use as few locks as possible, and for

as short time as possible.

100

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Transactions should be started only after the user has pressed a button, and they be

completed before the control is returned to the user (the user may navigate to another Web

page, and forget about the transaction on the current page).

Workflow Best Practice Checks

Best practice checks for workflow focus on the properties of workflow categories, templates,

approvals, and tasks. The checks verify that the properties are correctly configured for

execution. For information about how to set the options for best practice checks, see Best

Practice Options. This topic includes general principles to follow when you develop workflows

and a table of the best practice checks and how to fix the errors.

General Principles

When creating a query for a workflow document, consider the following:

 Most document data is used to set up conditions for workflow. In addition, the query

identifies workflow placeholders used in messages in the configuration user interface for

instructions and notifications. Make sure to use placeholder fields that the end-user can

understand and not fields such as RecId and infrastructure fields.

 By default, all data fields with the Visible property in the table set to Yes are exposed for

workflow conditions. To simplify the set up for workflow conditions, you can remove

unnecessary data fields that will not be used for workflow conditions or placeholders in the

configuration UI. To remove data fields, set the Dynamic property on the Fields node of the

data source to No. Expand the Fields node, right-click a field, and then click Delete. If the

query is not saved, the Delete command is not available.

 Set the Relations property of the query to Yes if the query system should use the

relations that are defined for tables and extended data types. When set to Yes, the query is

automatically updated if a relation is changed.

 Optionally, set the Join Mode property of the query to Outer Join. Records in one data

source are joined even if there are no matching values in the joined field from the second

data source. Only fields from Inner Join or Outer Join are visible in the configuration user

interface as conditions and placeholders.

 In the Properties sheet, set the Table property to the table that contains the data for

the workflow document. The root table in the query should be the same as the workflow

data source property of the form.

When creating task and approval elements in the Application Object Tree (AOT), be sure to

use unique and declarative label names for the element. When adding an approval to a

workflow configuration, the label Approval would not be unique enough for the user to

determine which approval is to be added.

Use the WorkflowWorkItemActionManager Class to manage task or approval outcome action

menu items for type Complete, Return, RequestChange, and Deny.

Best Practice Checks

The following table lists the best practices error messages and how to fix the errors.

Message Message type How to fix the error or warning

Configuration key not defined Error The workflow template or a workflow

element ConfigurationKey property setting

is invalid or not defined. Set the

ConfigurationKey property to a valid

setting. This property is optional.

Workflow document not

defined

Error The workflow template, task, or approval

Document property setting is invalid or not

101

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Message Message type How to fix the error or warning

defined. Set the Document property to a

valid setting. For more information, see

How to: Create a Workflow Document

Class. This property is required.

Workflow document does not

reference a valid class deriving

from the WorkflowDocument

Class

Error The workflow template, task, or approval

Document property setting must reference

a class that extends the

WorkflowDocument Class and overrides

the WorkflowDocument.getQueryName

Method. The class was probably deleted,

renamed, or no longer extends the

WorkflowDocument Class. For more

information, see How to: Create a

Workflow Document Class.

Action menu item not defined Error The task or approval ResubmitMenuItem or

DelegateMenuItem property setting is invalid

or not defined. Set the menu item to a

valid setting. For more information, see

How to: Associate an Action Menu Item

with a Workflow Task or Approval

Outcome. This property is optional.

Reference to action menu item

is invalid

Error The workflow template, task, or approval

menu item property setting is invalid or

no longer exists. The action menu item

was probably deleted or renamed. For

more information, see Creating a

Workflow Template.

Reference to Web action menu

item is invalid

Error The workflow template, task, or approval

Web menu item property setting is

invalid or no longer exists. The Web

action menu item was probably deleted

or renamed. For more information, see

Creating a Workflow Template.

Display menu item not defined Error The task or approval display

DocumentMenuItem property setting is invalid

or not defined. Set the menu item to a

valid setting. For more information, see

How to: Associate a Display Menu item

with a Workflow Task or Approval. This

property is required.

Reference to display menu

item is invalid

Error The task or approval display

DocumentMenuItem property setting is invalid

or no longer exists. The display menu

item was probably deleted or renamed.

For more information, see How to:

Create a Workflow Task and How to:

Create a Workflow Approval.

Reference to Web URL menu

item is invalid

Error The task or approval display

DocumentWebMenuItem property setting is

invalid or no longer exists. The display

menu item was probably deleted or

102

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Message Message type How to fix the error or warning

renamed. For more information, see How

to: Create a Workflow Task and How to:

Create a Workflow Approval.

Event handler should be

defined

Warning The task or approval EventHandler

property is invalid or not defined. Set the

EventHandler property to the event

handler for that workflow element. For

more information, see Handling Workflow

Events. This property setting is optional.

However, when an event handler is not

defined, no application logic will run

when this event is triggered.

Event handler not defined Error The task or approval outcome

EventHandler property is not valid or

defined. Set the EventHandler property to

the event handler for that workflow

element. For more information, see

Handling Workflow Events. This property

is required for all outcomes that are

enabled.

Event handler does not

reference a valid class

implementing the '%1'

interface

Error All workflow template event handlers

must implement the appropriate

workflow interface. For example, the

WorkflowCompletedEventHandler

Interface must be implemented by the

class that is referenced by the workflow

template CompletedEventHandler property

setting. For more information, see

Handling Workflow Events.

Module not defined Warning The workflow category Module property

setting refers to a module that is invalid

or no longer exists. The module was

probably deleted or renamed. For more

information, see ModuleAxapta

Enumeration. This property is required.

Category not defined Error The workflow template Category property

setting is not defined. Set the workflow

template Category property setting to a

valid category. This property is required.

Invalid reference to workflow

category

Error The workflow template Category property

setting is invalid or no longer exists. The

category was probably deleted or

renamed. For more information, see How

to: Create Workflow Categories.

Required element '%1' does

not reference a valid workflow

element

Error The specified task or approval workflow

element in the Required Elements

node property setting is invalid or no

longer exists. The workflow element was

probably renamed or deleted. For more

information, see How to: Add Required

Tasks and Approvals to a Workflow

103

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Message Message type How to fix the error or warning

Template.

Required element '%1' does

not reference same document

as the workflow template

Error The Document property setting of the

specified task or approval workflow

element in the workflow template

Required Elements node does not

match the Document property setting of

the workflow template. Set the specified

workflow element Document property

setting to match the workflow template

Document property setting. For more

information, see How to: Create a

Workflow Task and How to: Create a

Workflow Approval.

Participant provider does not

reference a valid class

implementing the

WorkflowParticipantProvider

Interface

Error The task or approval ParticipantProvider

property setting must reference a

participant provider class that

implements the

WorkflowParticipantProvider Interface.

For more information, see Defining

Workflow Providers.

Hierarchy provider does not

reference a valid

classimplementing the

WorkflowHierarchyProvider

Interface

Error The task or approval HierarchyProvider

property setting must reference a

hierarchy provider class that implements

the WorkflowParticipantProvider

Interface. For more information, see

Defining Workflow Providers.

One of the properties

ParticipantProvider or

HierarchyProvider must be

defined

Error The task or approval HierarchyProvider or

ParticipantProvider property setting is

invalid or not defined. Set the

HierarchyProvider or ParticipantProvider

property to a valid setting. For more

information, see How to: Add a Workflow

Provider to a Task or Approval. Either the

HierarchyProvider or ParticipantProvider

property is required. Optionally, both the

HierarchyProvider and ParticipantProvider

property may be set.

Due date provider not defined Error The task or approval DueDateProvider

property setting is invalid or not defined.

Set the DueDateProvider property to a valid

setting. For more information, see How

to: Add a Workflow Provider to a Task or

Approval. This property is required.

Due date provider does not

reference a valid class

implementing the

WorkflowDueDateProvider

Interface

Error The task and approval DueDateProvider

property setting must reference a due

date provider class that implements the

WorkflowDueDateProvider Interface. For

more information, see Defining Workflow

Providers.

Approve outcome must exist

and be enabled

Error The Approve outcome in the approval

Outcomes node has the Enabled property

104

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Message Message type How to fix the error or warning

setting set to No. Each approval must

have at least one enabled outcome of

type Complete and an action menu item

for the approval work item button to

display in the user interface. For more

information, see How to: Create a

Workflow Approval.

Element outcome '%1'

ActionMenuItem property not

defined

Error The specified task or approval outcome

action menu item is invalid or not

defined. Set the action menu item to a

valid setting. For more information, see

How to: Associate an Action Menu Item

with a Workflow Task or Approval

Outcome. This property is optional.

Element outcome '%1'

ActionWebMenuItem property does

not reference a valid Web

action menu item

Error The specified task or approval outcome

action Web menu item is invalid or no

longer exists. The specified action Web

menu item was probably deleted or

renamed. For more information, see How

to: Create a Workflow Task and How to:

Create a Workflow Approval.

Element outcome '%1'

ActionMenuItem property does

not reference a valid action

menu item

Error The specified task or approval outcome

action menu item is invalid or no longer

exists. The specified action menu item

was probably deleted or renamed. For

more information, see How to: Create a

Workflow Task and How to: Create a

Workflow Approval.

Element outcome '%1'

EventHandler property should be

defined

Warning The specified task or approval event

handler is invalid or not defined. Set the

event handler to a valid setting. For

more information, see Handling Workflow

Events. This property is optional.

However, when an event handler is not

defined, no application logic will run

when this event is triggered.

Element outcome '%1'

EventHandler property does not

reference a valid class

implementing the '%2'

interface

Error The specified task and approval outcome

event handler property setting must

reference a class that implements the

associate event handler interface. An

approval, for example, has an Approve

outcome of type Complete and the

EventHandler property setting must

reference a class that implements the

WorkflowElementCompletedEventHandler

Interface. For more information, see

Handling Workflow Events.

Task outcomes must contain

one enabled outcome of type
Complete

Error There are no enabled outcomes in the

task Outcomes node of type Complete.

Each task must have at least one

enabled outcome of type Complete and an

105

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Message Message type How to fix the error or warning

action menu item for the task work item

button to display in the user interface.

For more information, see How to:

Create a Workflow Task.

106

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

X++ Coding Standards

General principles are:

 Declare variables as locally as possible.

 Check the error conditions in the beginning; return/abort as early as possible.

 Have only one successful return point in the code (typically, the last statement), with

the exception of switch cases, or when checking for start conditions.

 Keep the building blocks (methods) small and clear. A method should do a single, well-

defined job. It should therefore be easy to name a method.

 Put braces around every block of statements, even if there is only one statement in the

block.

 Put comments in your code, telling others what the code is supposed to do, and what

the parameters are used for.

 Do not assign values to, or manipulate, actual parameters that are "supplied" by value.

You should always be able to trust that the value of such a parameter is the one initially

supplied. Treat such parameters as constants.

 Clean up your code; delete unused variables, methods and classes.

 Never let the user experience a runtime error. Take appropriate actions to either

manage the situation programmatically or throw an error informing the user in the Infolog

about the problem and what actions can be taken to fix the problem.

 Never make assignments to the "this" variable.

 Avoid dead code. (See Dead Code Examples.)

 Reuse code. Avoid using the same lines of code in numerous places. Consider moving

them to a method instead.

 Never use infolog.add directly. Use the indirection methods: error, warning, info and

checkFailed.

 Design your application to avoid Deadlocks.

More specific code standards are described below:

 X++ layout

 Comments

 Semicolons

 Constants

 Arrays

 Dates

 try/catch statements

 throw statements

 ttsBegin and ttsCommit

 if ... else and switch statements

 select Statements

X++ Layout

General Guidelines

 Only one statement per line.

 Break up complex expressions that are more than one line - make it visually clear.

 Use a single blank line to separate entities.

 Do not use parentheses around the case constants.

 Do not use parentheses around where expressions.

 Add one space between if, switch, for, while and the expressions starting parentheses.

For example:
 if (creditNote)

107

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 Use braces around all code blocks, except for around case clauses in a switch statement.

Use braces even if there is only one statement in the block.

Indentation

An indentation is equivalent to four (4) characters, which corresponds to one tab in the X++

editor. You must not start a new line in columns 2, 3 or 4.

 Put opening and closing braces, { and }, on the same level, on separate lines, and

aligned with the command creating the block. They must be at the start of a line, and in

a tab column position (1, 5, 9 etc.). Braces must be on a dedicated line unless a

opening brace is followed by a semicolon ({;) or a closing brace is followed by a while (

}while).

 The following reserved words should be placed at the beginning of a line: case, catch,

changeCompany, continue, default, else, for, if, retry, return, switch, try, ttsAbort, ttsBegin,

ttsCommit, while.

 The exceptions to this rule are:

 case: … (reserved words in a case statement)

 default: … (reserved words in a default statement)
 else if
 }while

 If a line of code starts with any other reserved word, or with an alphabetical character,

the line should start in a tab column position (1, 5, 9 etc). The following reserved

words must be placed in a tab column position: case, catch, changeCompany, continue,

default, else, for, if, retry, return, switch, try, ttsAbort, ttsBegin, ttsCommit, while.

 The exceptions to these rules are:

 case: … (reserved words in a case statement)

 default: … (reserved words in a default statement)
 else if
 }while

 The reserved word else must have a dedicated line unless you write else if .

 switch-case statements: indent case and default statements by 1 level (with any code

within these indented a further level) and indent break statements by two levels.

 Indent where and other qualifiers to the select statement by one level.

 If Booleans are used in a long expression, put them at the start of an indented new line.

Example switch-case Statement
switch (myEnum)

{

 case ABC::A:

 ...

 break;

 case ABC::B

 ...

 break;

 default:

 ...

 break;

}

Example select Statement
select myTable

 index hint myIndex

 where myTable.field1 == 1

 && myTable.field2 == 2;

108

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Example Layout of Booleans in a Long Expression
select firstOnly utilElements

 where utilElements.recordType == recordType

 && utilElements.parentId == parentID

 && utilElements.name == elementName;

Column Layout

Column layout should be used where more than one line has the same structure; for

example, in declarations or assignments.

Do not use column layout when there is only one row, or if consecutive rows do not have

the same structure.

Column format is defined using extra blanks.

Example Column Layout
tmpABC.refRecId = inventTable.recId;

tmpABC.itemGroupId = inventTable.itemGroupId;

tmpABC.itemId = inventTable.itemId;

tmpABC.amount = amount;

tmpABC.oldValue = this.getCategory(inventTable);

tmpABC write();

Layout for Methods

The starting parenthesis on method declarations and calls should be the character just after

the method name (no space).

If there are one or two parameters, the parameters can be listed on the same line. If there

are more than two parameters, move each parameter onto a new line, and indent by 4

spaces.

Example Layout for Method with One or Two Parameters

myMethod(parameter1, parameter2);

Example Layout for Method with Many Parameters
myMethod(

 parameter1,

 parameter2,

 parameter3);

See Also

X++ Coding Standards

X++ Standards: Comments

Use // for both single and multiline (block) comments. There should be a space between the

"//" and the start of the comment.

Comments should be in US-English and start with an uppercase letter (unless the first word

is a lowercase name).

Put comments on a separate line before the code they are describing. The only exception to

this is when you are describing parameters. In this case, put one parameter per line, with

the comment describing it to the right of the parameter.

When creating a multiline comment, do not write on the first or the last line of the comment

(as shown in the following example).

For example:
// Single line comment

109

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

<code>

//
// Comment on multiple lines.
// Do not add text to 1st or last line of comment.
//
<code>

Comments should not include:

 Dates

 Names

 Aliases

 Version or layer references

 Bug numbers – unless it is a workaround, or unless the code could appear inappropriate

if you didn't know that it was for a bug fix.

 Politically or culturally sensitive phrases

Note:

If you put a comment at the start of the method to describe its purpose and use, you

can use block comments (/* */).

Remove Commented-out Code from the Application

The Best Practice is that we don't ship a product with commented-out code, so any

commented-out code should be removed.

Tip:

To find comments in the source (both // .. and /* .. */), use the Find dialog to search

for methods containing the text (regular expression): /[/*]

See Also

X++ Coding Standards

X++ Standards: Using Semicolons

Always place a semicolon (;) on an empty line in front of the first statement in your code

(after the variable declarations).

This is particularly important if the statement does not begin with a keyword (select, while,

and so on). For example, the first part of the statement is a variable or a type reference.

You should use a semicolon even if the code compiles. Types introduced later (that have the

same name as the first part of the statement) might prevent the code from compiling.

See Also

X++ Coding Standards

X++ Standards: Constants

Follow the best practices rules about using constants. These are designed to make it easier

to maintain X++ code.

Constants

Rule Error level

Do not use hard-coded constants (except

0, 1, 100).

Warning

Define constants in a method, class

declaration, or if necessary globally in a

None

110

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Rule Error level

macro. Reuse existing constants.

Consider alternative ways of getting the

constant:

 Intrinsic Functions

 maxInt, minInt, funcName, maxDate system

functions

 Global macros

User Interface Text

Rule Error level

User interface text must be in double

quotes, and you must always use a label

(also in double quotes).

Error

User interface labels must be complete

sentences. Do not build sentences using

more than one label, or other constants

or variables under program control (do

not use concatenation).

Example:
Description description = "@SYS12345"

Use strFmt to format user interface text.

None

System-oriented Text

Rule Error level

System-oriented text constants must be

in single quotes.

None

Do not hard-code text. Warning

Do not use labels. You will get a warning

if a label is used inside single quotes.

Example:
#define.Filename('myFile.txt')

Filename filename = #Filename;

Warning

Numeric Constants

Rule Error level

Always review the direct use of numeric

constants, except for 0 meaning null, 1

meaning increment, and 100 when

calculating percents and currencies.

None

Certain numeric constants are predefined,

such as the number of days per week,

and the number of hours per day. For

example, see the TimeConstants and

SysBitPos macros in the Application Object

Tree (AOT).

None

111

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

See Also

X++ Coding Standards

X++ Standards: Arrays

This topic describes the best practice for using the memory option in arrays. For more

information, see Arrays.

The memory option is the optional second array declaration option. It specifies how many

consecutive entries in the array will be held in memory at a particular time. The rest will

reside on disk (a cached temporary file, indexed by the array index).

Dynamic arrays are sized according to the maximum index used.

Tip:

Use the memory option to limit the amount of RAM used to hold the data of the array

when you work with high numbered indexes (and large cells).

If you use all (or nearly all) of the entries in an array, set the memory option to a large

number, or do not set it at all.

If you only use a few of the entries in the array, set the memory option to a small number,

such as 1.

Read Performance

If you consider using the memory option on an array where you use all (or almost all) of the

entries, the look up performance should be considered.

If you traverse an array sequentially, such as with an index of 1, 2, 3, ..., n, you will

probably not experience any read performance problems. The cell data blocks will be read

sequentially from disk and they will be read to the end before the next block is read (disk

reads will be number of entries/memory option size).

If you traverse an array randomly (such as with an index of 300, 20, 5, 250, n, ..., 50) the

cell data will also be read from disk randomly, so you may experience read performance

problems (disk reads could be as high as the number of entries).

Example 1
MyTable myTable;
boolean foundRecord[,1];
;
while select myTable
 where myTable
 ...
{
 foundRecord[myTable.recId] = true;
 ...
}

Example 2
CustTable custTable;
CustAccount foundAccount[];
int i;
;
while select custTable
 where custTable
 ...
{
 i++;
 foundAccount[i] = custTable.AccountNum;
 ...
}

Example 3
Name foundName[,100];

112

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

int i;
;
while select custTable
 where custTable
 ...
{
 i++;
 foundName[i] = custTable.Name;
}

See Also

X++ Coding Standards

Swapping Arrays to Disk

X++ Standards: Dates

When you are programming with dates, Best Practices are:

 Use only strongly typed (date) fields, variables, and controls (do not use str or int).

 Use Auto settings in date formatting properties.

 Use DateTimeUtil::getSystemDateTime instead of systemDateGet or today. The today function

uses the date of the machine. The systemDateGet method uses the system date in Microsoft

Dynamics AX. Only DateTimeUtil::getSystemDateTime compensates for the time zone of the

user.

 Avoid using date2str for performing date conversions.

Use Strong Typing (date)

Never permanently store a date in anything other than a date field.

Always present a date in a date control.

Fields, variables, and controls should be defined by extended data types. These should have

their formatting properties set to Auto so that you do not take control away from the users'

specific date formatting setup.

Current Business Date

Most application logic should use the system function systemDateGet , which holds the logic

business date of the system (this can be set from the status bar).

The system function today() should be used only where the actual machine date is needed.

This is seldom the case.

Note:

The date and time can be different on the client and the server.

Avoid String / Date Conversions

You will not typically need to format a date to a string. Use date fields, variables, and date

controls on forms and reports instead.

If you need to format a date to a string:

 For user interface situations, use strFmt or date2Str with -1 in all the formatting

parameters. This ensures that the date is formatted in the way that the user has specified in

Regional Settings.

 For other specific system-related situations, such as communication with external

systems, use date2Str.

When you let Regional Settings dictate the format, be aware that it can change from user

to user and might not be a suitable format for external communication.

Using str2Date indicates that dates are being used that have had a string format.

113

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

X++ Standards: try/catch Statements

Always create a try/catch deadlock/retry loop around database transactions that might lead

to deadlocks.

Whenever you have a retry, all the transient variables must be set back to the value they

had just before the try. The persistent variables (that is, the database and the Infolog) are

set back automatically by the throw that leads to the catch/retry.

Example
try

{

 this.createJournal();

 this.printPosted();

}

catch (Exception::Deadlock)

{

 this.removeJournalFromList();

 retry;

}

See Also

X++ Coding Standards

X++ Standards: throw Statements

The throw statement automatically initiates a ttsAbort, which is a database transaction

rollback.

The throw statement should be used only if a piece of code cannot do what it is expected to

do. The throw statement should not be used for more ordinary program flow control.

Always place an explanation of the throw in the Infolog before the actual throw.

Note:

Do not use ttsAbort directly; use throw instead.

See Also

X++ Coding Standards

X++ Standards: ttsBegin and ttsCommit

ttsBegin and ttsCommit must always be used in a clear and well-balanced manner. Balanced

ttsBegin and ttsCommit statements are the following:

 Always in the same method.

 Always on the same level in the code.

Avoid making only one of them conditional.

Use throw, if a transaction cannot be completed.

Do not use ttsAbort; use throw instead.

Do not use anything that requires a user interaction within a transaction (such as an action

on a dialog box).

See Also

X++ Coding Standards

X++ Standards: if ... else and switch Statements

This topic describes X++ code style standards for the if...else statement and the switch

statement.

114

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

if...else

If you have an if...else construction, then use positive logic:

Preferred:
if (true)
{
 ...
}
else
{
 ...
}

Avoid:
if (!false)
{
 ...
}
else
{
 ...
}

It is acceptable to use negative logic if throwing an error, and in cases where the use of

positive logic would make the code difficult to understand.

There should be a space character between the if keyword and the open parenthesis.

Switch Statements

Always end a case with a break statement (or return/throw). If you intentionally want to

make use of the fall-through mechanism supported in X++, replace the missing break

statement with a comment line:
 // Fall through

This comment line makes it visually clear to the reader that the fall-through mechanism is

utilized.

Use 3 levels of indentation:
switch (Expression)
{
 case: Constant:
 Statement;
 break;
 ...
}

Do not put parentheses around cases.

There should not be a space between the case keyword and the colon character.

Use a switch Instead of Nested if ... else Statements

Use switch statements instead of nested if...else statements.

Recommended:
switch (myEnum)
{
 case ABC::A:
 ...
 break;
 case ABC::B:
 ...
 break;
 case ABC::C:
 ...
 break;
 default:
 ...
 break;
}

Avoid:

115

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

if (myEnum == ABC::A)
{
 ...
}
else
{
 if (myEnum == ABC::B)
 {
 ...
 }
 else
 {
 if (myEnum == ABC::C)
 {
 ...
 }
 else
 {
 ...
 }
 }
}

X++ Standards: select Statements

The basic rules for select statements are as follows:

 Specify what records you need by using the where statement to limit the returned rows.

To sort the returned records, use the order by statement.

 Add an index hint on realistic data only if you discover performance problems without

the hint.

 Use the index keyword if the order should be defined by the index definition.

Ordering of Data

Most select statements should be written without an index or an index hint, leaving the job

of ordering the data to the optimizer in the database system. Whenever you use the index

hint functionality, make a comment about why you are explicitly specifying it, thereby

taking control away from the database management system (DBMS). Consider using the

forceLiterals or forcePlaceholder statements as well or instead of select statements.

Note:

Be careful when using the forceLiterals keyword in X++ select statements. It could

expose code to an SQL injection security threat.

Use the order by statement when you want the data ordered, and you do not want to specify

which index to use. Ordering of data can take time and should only be done if needed.

Use the index keyword when you want the data to be centrally ordered as specified in the

index specification on the table. If the index is specified as Enabled: No, an index is not

generated by the database system.

The use of the index statement can sometimes result in an index hint.

Using the firstOnly Qualifier

If you are going to use only the first record or if only one record can be found, use the

firstOnly qualifier. This optimizes the select statement for only one record.

Note:

The firstOnly qualifier does not guarantee that only one record is returned.

Do not use while select firstOnly.

The firstOnly qualifier and the field list are implicit in (select...).<field> statements, and are

not explicitly needed. Use this kind of select statement wherever reasonable.

It is a best practice to use the firstOnly qualifier in find methods on tables.

116

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Using select Statements Locally in Methods

If a select statement is local to a method, use a field list to increase performance. If you use

a select or a while select statement and the size of the fields that are used total less than 50

percent of the total record size, a warning appears if you do not use a field list.

If a select statement is local to a method and the firstOnly qualifier is not used, you must

use the next statement on the result set.

Layout Examples

Here are two (contrived) examples of how to find ledger transactions in account number,

transaction date order.

The following code shows how to find the last week's (that is, a few days) transactions on all

of the (many) Profit and Loss accounts.
select firstOnly ledgerTrans
 index hint DateIdx
 order by accountNum, transDate
 where ledgerTrans.accountNum >= '40000'
 && ledgerTrans.accountNum <= '99999'
 && ledgerTrans.transDate >= 26\04\1999
 && ledgerTrans.transDate <= 02\05\1999;

The following code shows how to find transactions for the entire year (many dates) on (the

few) liquid assets accounts.
while select ledgerTrans
 order by accountNum, transDate
 where ledgerTrans.accountNum >= '11100'
 && ledgerTrans.accountNum <= '11190'
 && ledgerTrans.transDate >= 01\07\1999
 && ledgerTrans.transDate <= 30\06\2000
{
 // Do whatever is needed.
 print ledgerTrans.amountMST;
}

Following are best practices from the previous examples:

 The index, order by, and where statements are indented once relative to the select or while

select statements.

 The where expression is structured in a column.

 The Boolean operators (&&) are at the beginning of the line (and in columns).

 The while select block has braces even though it contains only one statement.

 The braces are at the same column position as the while block.

 The uppercase- and lowercase-name standards are adhered to.

See Also

Queries Best Practice Checks

Intrinsic Functions

Intrinsic functions are metadata assertion functions. They take arguments that represent

entities in the Application Object Tree (AOT), and validate these arguments at compile time.

They have no effect at run time. Intrinsic functions are a subgroup of the Functions, and

typically have names ending in Num or Str, for example: classNum and formStr.

Intrinsic functions should be used wherever possible in X++ code to make the code resilient

to changes to the metadata stored in the AOT.

You will get a best practice warning if you use the for identifierStr function. This is because

no existence checking is carried out for identifierStr. Try to use a more specific intrinsic

function if one is available.

The following list contains the intrinsic functions in MorphX.

117

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Validation of Table Metadata

 tableCollectionStr

 tableFieldGroupStr

 tablePName

 tableNum

 tableMethodStr

 tableStaticMethodStr

 tableStr

Validation of Field Metadata

 fieldNum

 fieldPname

 fieldStr

Validation of Index Metadata

 indexNum

 indexStr

Validation of Data Type Metadata

 enumCnt

 enumNum

 enumStr

 extendedTypeNum

 extendedTypeStr

 typeId

Validation of Configuration and Security Key Metadata

 configurationKeyNum

 configurationKeyStr

 securityKeyNum

 securityKeyStr

Validation of License Metadata

 licenseCodeNum

 licenseCodeStr

Validation of Class Metadata

 classNum

 classStr

 methodStr

 staticMethodStr

Validation of Form, Report, Query, and Menu Metadata

 formStr

Note:

In forms, control::controlName returns the ID of the control.

Where possible, use the AutoDeclaration property on controls.

 menuItemActionStr

 menuItemDisplayStr

 menuItemOutputStr

118

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 menuStr

 reportStr

 queryStr

Validation of Web Metadata

 webActionItemStr

 webDisplayContentItemStr

 webletItemStr

 webOutputContentItemStr

 webpageDefStr

 webReportStr

 websiteDefStr

 websiteTempStr

 webStaticFileStr

 webUrlItemStr

 webWebpartStr

Other

 identifierStr

 literalStr

 maxDate

 maxInt

 minDate

 minInt

 resourceStr

 varStr

Clear Code Examples

The code in the two examples below can be rewritten to be much clearer.

Example 1

From:
if (args.parmEnumType() != enumnum(BMBuildIdEnum))
{
 if (args.record().tableId == tableNum(BMmoduleTable))
 {
 moduleTable = args.record();
 buildId = moduleTable.buildId;
 }
 else
 {
 return null;
 }
}
else
{
 buildId = args.parmEnum();
}
...

To:
if (args.parmEnumType() == enumNum(BMBuildIdEnum))
{
 buildId = args.parmEnum();
}
else
{
 if (args.record().tableId == tableNum(BMmoduleTable))
 {

119

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 moduleTable = args.record();
 buildId = moduleTable.buildId;
 }
 else
 {
 return null;
 }
}
...

The rewrite puts the most important case first, and removes the negative logic used in the

first if statement in the first version of the code.

Example 2

From:
ledgerJournalTrans = this.ledgerJournalTransInitFromCreate(_tmpProjAdjustmentCreate);
 if (ledgerJournalTrans.validateWrite())
 {
 ledgerJournalTrans.insert();
 ProjPostLedger = ProjPost::construct(ledgerJournalTrans,ledgerVoucherTrans);
 if (projPostLedger.checkTrans())
 {
 projPostLedger.PostTrans();
 }
 else
 {
 throw error("@SYS21628");
 }
 }
 else
 {
 throw error("@SYS21628");
 }
 ledgerjournalTrans.delete(false);
...

To:
ledgerJournalTrans = this.ledgerJournalTransInitFromCreate(_tmpProjAdjustmentCreate);
if (!ledgerJournalTrans.validateWrite())
{
 throw error("@SYS21628");
}
ledgerJournalTrans.insert();
ProjPostLedger = ProjPost::construct(ledgerJournalTrans,ledgerVoucherTrans);

if (!projPostLedger.checkTrans())
{
 throw error("@SYS21628");
}
 projPostLedger.PostTrans();
 ledgerjournalTrans.delete(false);
...

See Also

Dead Code Examples

X++ Coding Standards

Dead Code Examples

Avoid writing redundant code.

Example 1

In the following example, b++ is never reached:
a++;
return a;
b++;
return b;

120

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Example 2

In the following example, the break statement is never reached:
switch (type)
{
 case UtilElementType::Job:
 return false;
 break;
 ...

Example 3

In the following example, return a is never reached:
if (!a)
{
 throw error("@SYS21628");
 return a;
}
b++;
return b;

Example 4

In the following example, the else statement is never used, because execution has already

ended at the return statement:
if (a)
{
 return a;
}
else
{
 b++;
 return b;
}

Use this format instead:
if (a)
{
 return a;
}
b++;
return b;

See Also

Clear Code Examples

X++ Coding Standards

Best Practices: XML Documentation

Microsoft Dynamics AX conducts a best practices check of the XML comments to make sure

that you provide documentation in the appropriate tags. For information about how to set

the options for best practice checks, see Best Practice Options.

Best Practice Checks

The following table lists the best practices error messages and how to fix the errors.

Message Message type How to fix the error or
warning

Tag '%1' in XML

documentation is not

supported.

Warning Add XML documentation. For

information about how to add

XML documentation, see How

to: Add XML Documentation

to X++ Source Code. Because

this is a warning instead of an

121

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Message Message type How to fix the error or

warning

error, this is optional.

Unsupported tag '%1' in XML

documentation.

Error or Warning Check the casing of the XML

tags if this is reported as an

error. If this is reported as a

warning, an unsupported tag

is present. Remove

unsupported tags.

Missing tag '<param

name="%1">' in XML

documentation.

Error Add <param> tags to the XML

header template. The

<param> tag must have a

name attribute. The value of

the attribute is case-sensitive

and must match the casing in

the method.

Missing tag 'returns' in XML

documentation.

Error Add <returns> tags to the

XML header template.

Missing tag 'summary' in XML

documentation.

Error Add <summary> tags to the

XML header template.

Tag '%1' exists more than

once in XML documentation.

Error Delete extra tags. This applies

only when multiple tags are

not appropriate.

Tag '<param name="%1">'

has no content in XML

documentation.

Error Add a description of the

parameter between the

<param> tags.

Tag '<param name="%1">' in

XML documentation doesn't

match actual implementation.

Error Fix the value of the name

attribute. It is case-sensitive

and must match the casing in

the method.

Tag 'exception' has no content

in XML documentation.

Error Add a description of the

exception between the

<exception> tags.

Tag 'permission' has no

content in XML

documentation.

Error Add a description of the

required permission between

the <permission> tags.

Tag 'remarks' has no content

in XML documentation.

Error Add content between the

<remarks> tags or delete the

<remarks> tags.

Tag 'returns' has no content in

XML documentation.

Error Add a description of the return

value between the <returns>

tags.

Tag 'returns' in XML

documentation doesn't match

actual implementation.

Error Delete the <returns> tags

and the description of the

return value.

Tag 'summary' has no content

in XML documentation.

Error Add a topic summary between

the <summary> tags.

XML documentation is not

well-formed.

Error Make sure that there are no

mistakes in the XML tags.

Each opening tag must have a

corresponding closing tag.

Tag 'seealso' has no content in Error Add content between the

122

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Message Message type How to fix the error or

warning

XML documentation. <seealso> tags or delete the

<seealso> tags.

No XML documentation for this

method.

Error XML documentation has not

been written for this method.

Example

Description

The following example shows the XML header template with documentation for the

DocuAction.newArgs method.

Code
/// <summary>

/// Creates a new instance of the DocuAction class.

/// </summary>

/// <param name="args">

/// The arguments that are used to create the DocuAction instance.

/// </param>

/// <returns>

/// The new DocuAction instance.

/// </returns>

/// <exception cref="Exception::Error">

/// A valid DocuAction object could not be created.

/// </exception>

static DocuAction newArgs(Args args)

{

 FormDataSource formDataSource;

 DocuRef docuRef;

 FormFunctionButtonControl ctrl;

 Object formRun = args.caller();

 DocuType docuType;

 DocuAction createdDocuAction;

 ;

 ctrl = formRun.selectedControl();

 docuType = DocuType::find(ctrl.name());

 if (!docuType || !docuType.verifyParameters(true))

 return null;

 formDataSource = formRun.datasource();

 formDataSource.create();

 docuRef = formDataSource.cursor();

 docuRef.TypeId = ctrl.name();

 formDataSource.write();

 formDataSource.refresh();

 createdDocuAction = DocuAction::newDocuRef(docuRef);

 if (createdDocuAction != null)

123

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 {

 createdDocuAction.verify(true);

 }

 return createdDocuAction;

}

Best Practices: Avoiding Potential Security Issues

Some of the X++ APIs may have potential security issues. For example, they might allow

unauthorized access to the database or the Application Object Tree (AOT), if used in a

nonsecure manner.

If a call to one of these potentially unsafe APIs generates a Best Practices error, this

indicates that you should assess the security implications of using the method. You may

need to apply Code Access Security by using one of the classes derived from

CodeAccessPermission Class, and/or take other mitigating actions, such as validating user

input.

When you are satisfied that the security implications of using the class have been

investigated and mitigated, you can turn off the best practice error by adding the following

comment above the call to the method.
// BP Deviation documented

There is more information about the mitigations for each potentially unsafe API in the Help

topics for the classes you received the error message for.

For more information about the APIs protected by Code Access Security, see Secured APIs.

Microsoft Dynamics AX conducts a best practices check of the XML comments to be sure

that you provide documentation in the appropriate tags. For information about how to set

the options for best practice checks, see Best Practice Options.

Best Practice Checks

The following table lists the best practices error messages and how to fix the errors.

Message Message type How to fix the error or warning

TwC: Validate data

displayed in form is fetched

using record level security.

Dangerous API %1 used.

Error Assess the security implications

of using the method. You may

need to apply Code Access

Security by using one of the

classes derived from

CodeAccessPermission Class. For

information about record level

security, see Record Level

Security. For more information

about security, see Writing

Secure X++ Code.

See Also

Setting Up Best Practices Checks

http://go.microsoft.com/fwlink/?LinkId=108580
http://go.microsoft.com/fwlink/?LinkId=108580

124

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Naming Conventions

Naming conventions contribute to consistency and to making the application easier to

understand.

There are specific naming rules for the following application objects:

 Table Properties

 Table Field Properties

 Tables

 Views

 Extended Data Types

 Enums

 Security keys

 Classes

 Interfaces

 Methods

 Parameters

 Forms

 Lookup Forms

 Form Data Sources

 Reports

 Indexes

 Variables

 License codes

General Rules

 All names must be in U.S. English.

 The default rule is to use logical and descriptive names if no other specialized rules

apply.

 Identifier names have a limit of 40 characters.

 Names in the Application Object Tree (AOT) and in X++ code must correspond to the

names in the U.S. English user interface.

 Names must be spelled correctly.

 Names must be used consistently.

 Each path in the AOT must be unique; nodes must not have identical names.

 All texts that appear in the user interface must be defined by using a label. (This rule

applies only if you want your solution certified as an international solution.)

 Do not begin a name with "aaa", or "CopyOf". Do not begin a name with "DEL_" unless

it is a table, extended data type or enum, and it is needed for data upgrade purposes.

Names that use these prefixes cause a best practices error when you check the objects

into the version control system.

Rules are available about the following:

 Use of Labels

 Name structure

 Upper and lower case

 Underscores

 Abbreviations

 Prefixes

 Automatically Generated Names

125

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practices for Labels

Every user interface text must be defined by using a label.

A new label must be created for each new semantic use.

Existing labels must be reused. Always try to find a label that expresses the same semantics

as the semantics you want to express.

A label should have an uppercase first letter and all the other letters should be in lowercase.

Labels should not end with a period, unless they are HelpTexts, or unless they end with

three periods, for example: "New…", "Add…".

You should not use text constants (for example "%1 - %2") to format labels.

Describe the use of the text that is used in the label in US-English in the Description field

on the Label editor form. This is particularly important for shorter labels where the context

is not completely clear. The comment is used when the label is translated to other

languages.

Inherit Labels from Underlying Data Types

The contents of label-type properties are usually automatically taken from the underlying

definitions. For example, the label used for a field HelpText is often inherited from the

HelpText of the underlying extended data type. It is an error to insert the same label as that

used in the underlying definition (inherit it, do not duplicate it).

However, the label should be changed, if a different description is needed for the item. The

following illustration shows a typical situation:

 A label is defined on an extended data type.

 The extended data type is extended by another extended data type, but as long as the

label is not changed, it is inherited and reused.

 That other extended data type is used on a field, and as long as the label is not changed

on the field, it is reused again.

 The field is shown using a control on a form, but as long as the label is not changed on

the control, it is reused again.

When possible, a label should be created on an extended data type rather than on a

field. If an existing extended data type can be reused, but the existing label is

considered unsuitable, create a new extended data type based on the former one and

change only the label.

See Also

HelpText Guidelines

HelpText Guidelines

Apply the following guidelines when setting the HelpText property for menu buttons, menus,

submenus, and menu items in Microsoft Dynamics AX.

 Phrase sentences in the imperative form.

 Example: "Create or update items."

 If the item does not require user interaction, or if the imperative is inappropriate, use a

descriptive form.

 Example: "Inventory value for the physically updated quantity (floating value)."

126

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 End sentences with a period or a question mark.

 Avoid using exclamation marks (!), and do not use question marks to shorten a phrase.

 Example: Avoid "Update?"; use "Use to update." instead.

 When referencing a command or menu item capitalize the name, but avoid any

additional accentuation like quotation marks.

 One-word definitions are usually inadequate.

HelpText Examples

Menu and Sub-menu Text Examples

Journals Journals available for this module.

Inquiries Inquiries available for this module.

Reports Reports that can be printed from this

module.

Periodic Jobs available for periodic processing.

Wizards Wizards available for guiding you through

tasks.

Setup Setup forms with parameters for setting

up this module.

Menu Button Text Examples

Post Select a posting option for the current

record.

Setup Update setup information for the current

project.

Inquiries Get specific information related to the

current project.

Functions Select a function to be applied on the

current project.

Print Select a printing option for the current

record.

Transactions View transactions entered on the current

record.

Tip:

 If possible, phrase all HelpTexts within a single menu, submenu, or menu button

group identically, with a consistent choice of words.

See Also

Best Practices for Labels

Naming Conventions: Name Structure

Where possible, application object names should be constructed hierarchically from three

basic components:

 {business area name} + {business area description} + {action performed (for classes)

or type of contents (for tables)}

 Examples:

 CustInvoicePrintout

 PriceDiscAdmCopy

127

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 PriceDiscAdmDelete

 PriceDiscAdmSearch

 PriceDiscAdmName

 PriceDiscAdmTrans

Also refer to the general naming conventions.

Use of Uppercase and Lowercase

Application objects names are mixed case. The first letter of the application object is

uppercase. The first letter of each internal word is uppercase. For example,

AddressFormatHeading, SalesAmount. Application objects include tables, maps, extended

data types, base enums, table collections, macros, classes, forms, reports, queries, menus,

and menu items.

Methods, system functions, and variables have mixed-case names in with a lowercase first

letter. The first letter of each internal word is capitalized. For example, classDeclaration,

createProject.

Primitive types have lowercase names. For example, str, date, int, real, void, boolean.

true, false, and null are all lowercase.

Keywords in the X++ language all begin with a lowercase letter. For example, if, while, for,

select, ttsCommit.

Tips:

 Use the function Add-Ins > Source Code Titlecase Update to "wash" your code to

have correct case.

 If you use version control within Microsoft Dynamics AX and the RunTitleCaseUpdate

option has been set to Yes, errors in the capitalization of the first letter of names are

automatically corrected when you check the object in. The RunTitleCaseUpdate option

is typically set by an administrator. It is available on the General tab of the Version

Control Configuration form, which can be opened from Tools > Development tools

> Version control > Setup > System settings.

Naming Conventions: Underscores

The underscore character ('_') can be used in the following situations.

 When naming formal parameters, it should be used as the first character.

 In the DEL_ prefix.

 Subclasses can have the same name as their parent class, postfixed with a logical name

that describes the subclass specialization. The name of the parent class might have to

be shortened. In this case, use an underscore between the shortened parent class

name, and the rest of the name. For example: InventUpd_Financial, InventUpd_Physical.

 In an application object that is specialized for a specific country/region, the name is

postfixed with underscore and the country/region code. For example: TaxReport_BE,

LedgerJournalizeTrans_ES.

Do not use an underscore in the following situations:

 Beginning of an application object name.

 First character of a variable name in class declarations or methods.

 End of a variable name in class declarations or methods.

See Also

Naming Conventions

128

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Naming Conventions: Abbreviations

Avoid abbreviations unless the abbreviation is much more widely used than the long form,

for example: URL or HTML.

If you need an abbreviation, you must comply with the following rules.

 Consistency: if you apply an abbreviation, it should be used everywhere in place of the

name. There should be no more than one abbreviation for a name.

 Recognition: the abbreviation should be commonly recognized and understood (at least

by Microsoft Dynamics AX users).

A number of abbreviations are standard in the system. These abbreviations must, like other

abbreviations, be used consistently and never written in full. Examples:

Full name Standard abbreviation

Customer Cust

Payment Paym

Bill of material BOM

Number Num

Warehouse Management System WMS

See Also

Naming Conventions

Naming conventions: Prefixes

Subject Area Object Prefix

A subject area specific application object is prefixed with the name of the subject area the

object belongs to, for example Cust*, Invent*, Ledger*, Proj*, Vend*.

Examples:

WMSOrderSplit

CustBankAccount

CustBalanceCurrency

InventAccountType

Application Area Object Prefix

An application area object is prefixed with the name of the application area the object

belongs to, for example Aif*, and Sys*.

The DEL_ Prefix

DEL_ is a special prefix. It is an abbreviation for ―Deleted‖ and is used for application
objects that will be deleted in the next version of the product.

DEL_ tables and fields are necessary to allow data update. Such objects allow access to old

data that must be migrated to a new location.

When an object with a DEL_ prefix is introduced, the update mechanisms handle changes in

the standard application, for example by moving fields and X++ code to the table that

replaces the one with the DEL_ prefix. But, if you have written X++ code that references an

application object that has been given a DEL_ prefix, you have to update these references

yourself.

See Also

Naming Conventions

129

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Automatically Generated Names

All automatically generated names need to be renamed by using the naming conventions for

Microsoft Dynamics AX. The following table shows some examples.

From To

Class1 The logical class name.

method1 The logical method name.

TabPage The logical tab page name.

Group1 The logical group name in forms.

ReportDesign1 The logical name of the report design. If

there is only one report design, you can

call it ReportDesign.

Field_1 The logical name of a field on a report

design.

Field1 The logical field name in a table.

Naming Conventions for Variables

Variables of general types (primitive and composite data types) should be named logically.

Variables of specialized types (extended data types) should have the same name as the

type (which should have a logical name) but starting with a lower case character.

If you have more than one variable of the same specialized type, use logical names that

contain the name of the type as a prefix.

Avoid one-character variable names, except for temporary 'looping' variables, like i and j,

or coordinate variables like x and y.

Examples:
InvoiceJour invoiceJour;
InvoiceLine invoiceLine;
CustTable custTable;
CustTrans custTrans;
MarkupTrans markupTrans;
int i;

The prefix of the variable can be removed if the name of the variable is still understandable.

See Also

Naming Conventions

Naming Conventions for License Codes

License codes should use the same prefix as the module name.

See Also

Naming Conventions

130

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Designing a Microsoft Dynamics AX Application

This section discusses how to design a Microsoft Dynamics AX application to minimize

problems during future updates such as when applying service packs or moving to the next

version of the product.

 Modify Objects in the Standard Application

 Modifying User Interface Text

 Design Principles

 Best Practices: Performance Optimizations

 APIs in the Standard Application

 Frameworks Introduction

 Design Guidelines for Cost-Efficient Upgrades

Data Model for New Microsoft Dynamics AX Modules

When creating a new module, create a data model that has the following criteria:

 Has a structure similar to the one in the standard application

 Can be normalized to the third normal form

For a description of the third normal form, see the Microsoft Knowledge Base article about

Data Normalization Basics.

The following figure shows a simplification of the basic structure of the data model found in

most Microsoft Dynamics AX modules. This structure can be used as a template for setting

up the properties of your tables.

Data model found in most modules

http://go.microsoft.com/fwlink/?LinkId=70739

131

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

The following table shows typical values for the various types of tables used in the previous

figure. (All values shown in these tables are only guidelines and might not be exactly as

found in the actual tables.)

Property CustGroup CustTable CustTrans

Name postfix Group. Table. Trans.

TableGroup Group. Main. Transaction.

Description Stores information

that categorizes the

records.

Stores some base

data in the

application.

Stores some

transactions in the

application.

Number of records Typically relatively

low with relatively

static information.

Typically high with

relatively static

information.

Typically very high.

Key There is always a

key.

There is always a

key.

There is sometimes a

key.

Delete actions The information is

sometimes so non-

vital that records can

be deleted from the

table, even if there

are other records in

the system that

relate to the table.

Restricted against

CustTrans and

SalesTable.

Not applicable.

CacheLookup Entire table. Found, NotInTTS. None.

ClusterIndex On the key. On the key. Consider.

The following table shows additional typical values for the various types of tables used in

the previous figure.

Property CustParameters SalesTable SalesLine

Name postfix Parameter. Table. Trans or Line.

TableGroup Parameter. WorkSheetHeader. WorkSheetLine.

Description Stores some basic

parameters in the

application.

There is one field per

parameter.

Stores some header

information for the

related worksheet

transactions.

Stores worksheet

lines in the

application.

Number of records Typically only one, or

very few, with very

static information.

Typically high with

relatively static

information.

Typically very high.

Key There is a key to

make the found

cache work.

There is always a key. There is sometimes a

key.

Delete actions Not applicable. Cascading SalesLine. Not applicable.

CacheLookup Found. NotInTTS. None.

ClusterIndex Not applicable. On the key. Consider.

See Also

Designing a Microsoft Dynamics AX Application

132

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Modify Objects in the Standard Application

When you modify application objects in the Microsoft Dynamics AX standard application,

implement the modifications by using one of the following techniques:

 Modify an existing application object

 Create a new application object that replaces the original application object

If the modification is small, such as adding a few new buttons or some new fields to a form,

make the modifications in the original form. This creates a copy of the form in a new layer.

If there are many modifications or a total redesign of the form, it is often better to create a

new form as a copy of a standard form. You must set the menu item to point to the new

object. However, the upgrade wizard does not notify you when the original form changes,

which is a disadvantage.

When adding new functionality to an application object, a general strategy is to add a new

method, and then call it from the application object. This helps minimize the task of porting

the modifications when an upgrade is performed. If the new functionality was implemented

directly in one of the existing methods, it would be more time-consuming to port the

functionality.

Add Comments

Add a comment whenever a modification is made to code in an application object in the

standard application as shown in the following example.
void methodName()
{
 // Standard X++ code.

 // <Your Module Name> Begin.
 this.myNewMethod();
 // <Your Module Name> End.

 // Standard X++ code.
}

Both the beginning and the end of the new code are marked by the comments. The

comments include the name of your custom module.

Overlayering and Overriding Classes

The following figure shows the difference between overlayering and extending.

Difference between overlayering and extending

133

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

The following information corresponds to the numbers in the previous figure:

1 – Create a new layer if all modules are to use the modified functionality.

2 – Create a subclass to be used instead of the base class only if your new module needs

the modified functionality.

If the base class has been constructed by using the ClassFactory Class class, it can have

more than one explicit constructor. Instead of creating a new subclass, extend the class and

overlayer only the explicit constructor(s) in the base class as shown in the following figure.

Extending a class created by using the ClassFactory class

The following information corresponds to the numbers in the previous figure:

1 - The explicit constructor in the base class is modified (overlayered) to create an object of

the ExtendedMyClass type.

2 - The methods in the extended class can refer to the base functionality by using super().

By using this technique, overlayer only one method (the explicit constructor in the base

class). While you gain all the usual benefits of inheritance, you don't need to modify all the

objects that refer to the base class.

See Also

Designing a Microsoft Dynamics AX Application

Modifying User Interface Text

The recommended way to modify text that appears in the user interface is to modify

property values on the extended data types or base enums in the application.

When customizing the text, you can create new labels. However, to ensure consistent

terminology in the user interface, you should always reuse standard labels, if possible.

Never create duplicates.

The strategy is that SYS labels in Microsoft Dynamics AX are never deleted. This means that

you can assume that the SYS labels that you use in your application will be available even

after a Microsoft Dynamics AX installation is upgraded.

If a customer requests major terminology changes, the fastest solution may be to make the

modifications directly in the label file. However, this strategy is not recommended, because

all the modifications will be lost when a new label file is installed; for example, when you

install a service pack. Microsoft Dynamics AX does not provide any tools that can assist you

in maintaining the modifications that you have made manually in the label file.

134

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

See Also

Best Practices for Labels

Design Principles

This section describes several design principles to be employed when you design a Microsoft

Dynamics AX application.

 Keep Business and User Interface Logic Separate

 Where to Place the Code

 Always Use Field Groups in Tables

 Use Auto Property Settings

See Also

Designing a Microsoft Dynamics AX Application

Frameworks Introduction

Keep Business and User Interface Logic Separate

It is very important to have a clear interface between the presentation logic (user interface)

and the business logic. Do not mix these two types of logic.

Business logic must be implemented in classes and on tables.

Never design your business logic so that it has direct references to controls on forms or

reports. The design of the business logic must enable any relevant form or report to use it.

Remember that the business logic in Microsoft Dynamics AX can be used though COM from

other applications. For example, an X++ script can access the business logic that creates a

sales quotation. This underscores the importance of not letting the business logic be

dependent on a specific Microsoft Dynamics AX form or report.

See Also

Where to Place the Code

Designing a Microsoft Dynamics AX Application

Where to Place the Code

Correct code placement is essential for good application performance (especially in the

client/server environment) and to make the application easy to customize, reuse, navigate,

and maintain.

3-tier Design

Optimize your programs to utilize the 3-tier architecture that is supported by Microsoft

Dynamics AX.

Tier Objects and code belonging to the tier

Client Presentation layer. This is where forms

are stored. Place client-specific classes

and methods here.

Object server The location of business application logic.

Transaction-oriented database update

jobs should be placed to run here, close

to the database.

Database server Utilize the power of the database server

by using aggregate functions, joins, and

other calculating features of the database

management system.

135

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Classes

Put code in the classes that are:

 Related to many tables, such as update jobs

 –or–

 Not related to tables, for example, various supporting activities

Create class instance methods:

 When working on the instance variables of the class (objects of)

 –or–

 When overriding is potentially useful

Create class static methods when:

 Access to the class instance members is not needed

 Overriding is not necessary

 The functionality of the method is related to the class it is defined on

 The method might be able to execute on a different tier than the method's

Tables

Put code that is strictly related to a table as methods on that table.

Create table instance methods for handling one record at a time. Create table static

methods when handling none, some, or all records.

Split code to be executed on separate tiers into separate methods.

Notes:

 Do not create instance methods when no instance is needed.

 Code in static methods can technically be created anywhere—on any table or class—
because it has no physical binding to the instance. Create it either on the table or on the

class where it logically belongs.

The Global Class

Place methods in the Global class if they cannot be placed more logically on another class (or

table).

Methods on Global should have the same character as the Functions. They should be

general-purpose, tool-extending, and application-neutral.

Do not use the Global:: prefix when calling Global methods—methods on this class do not

need a variable declaration.

Forms and Reports

Do not put any code in forms or reports except for calls to the classes and table methods

that handle complex layout and business logic.

Do not to place edit and display methods on forms and reports if they can be placed on a

table.

If code cannot be avoided in the form:

 Place the code at the data source/data source field level and not at the control level.

 Call classes from buttons on forms by using menu items (for example, by not using

code).

Maps

Use maps for a limited number of connected fields. For example, for the Address fields, code

should be placed on AddressMap.

136

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Views

Views are limited select statements used on read-only tables. Do not place much code on

views, unless, for example, you have a display method on the parent table.

See Also

Designing a Microsoft Dynamics AX Application

Always Use Field Groups in Tables

When designing tables, it is very important to use field groups. You should also add fields to

a field group if you are adding fields to existing tables. Add them to an existing field group,

if possible.

When you use field groups, IntelliMorph can automatically update the layout of all related

forms and reports whenever a modification is made to the field groups.

If you create new forms or reports based on the field groups defined in the standard tables,

you will not have to manually update the custom object when the standard tables are

modified by an upgrade.

The sequence of the fields in the field groups on tables can be used to determine the

sequence of the fields in forms. To do this, use the AutoDataGroup property on the Groups

controls in the form design.

This means that the order in which the fields appear in the field group is significant.

See Also

Best Practices for Field Groups

Using Global Variables

Global variables are often needed because of flawed implementation designs. However, if

used for caching purposes, global variables can provide increases in performance. This topic

describes how you can implement a global variable with zero maintenance during an

upgrade.

How to Set the Variable

Get the globalCache variable located on the ClassFactory class:
SysGlobalCache globalCache = ClassFactory.globalCache();

Call the set method:

globalCache.set(str owner, anytype key, anytype value);

Parameters Description

owner A unique name that identifies you as the

user. Use classIdGet(this) or

classStr(myClass).

key Identifies your variable. This is useful if

you need more than one global variable

from the same location.

value The actual value of your variable.

Get the Variable

Get the globalCache variable, located on the ClassFactory class:
SysGlobalCache globalCache = ClassFactory.globalCache();

Call the get method:

value = globalCache.get(str owner, anytype key, anytype returnValue = '');

137

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Parameters Description

owner Must be a unique name that identifies you

as the user.

key Identifies your variable.

returnValue The value you want if the global variable

has not been set. This is useful for

caching purposes. See the following

example.

Example
void new(Integer _width = Imagelist::smallIconWidth(),

 Integer _height = Imagelist::smallIconHeight())

{

 SysGlobalCache globalCache;

 Container packedData;

 ClassName className;

 ;

 if (this.keepInMemory())

 {

 globalCache = ClassFactory.globalCache();

 className = classId2Name(ClassIdGet(this));

 packedData = globalCache.get(className, 0, connull());

 imageList = globalCache.get(className+classStr(imagelist),

 0,

 null);

 }

 if (!imageList)

 {

 imagelist = new Imagelist(_width,_height);

 this.build();

 if (this.keepInMemory())

 {

 globalCache.set(className, 0, this.pack());

 globalCache.set(className+classStr(imagelist),

 0,

 imagelist);

 }

 }

 else

 {

 this.unpack(packedData);

 }

}

Client/Server Considerations

Because of the duality of ClassFactory, global variables can exist either on the client or the

server. This could mean less network traffic because it is possible to have the global

variable on both sides—set it twice.

To share your global variable across the network and accept the performance penalty of a

client/server call, use the infolog variable (Info class) or appl variable (Application class)

instead of ClassFactory. They reside on the client and on the server, respectively.

138

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Use Auto Property Settings

A general design rule is to keep as many property settings set to Auto as possible. The

benefit of doing this is that the application objects will automatically adjust to any changes

of the kernel‘s interpretation the application object‘s behavior, such as how a form or report

should be displayed.

Use Auto Report Design

When you create reports, it is recommended that you use the Auto design. The benefit of

using the Auto design is that your reports will automatically adjust the layout based on the

IntelliMorph technology.

For more information, see report design.

Best Practices: Performance Optimizations

This section has some hints on how an application can be optimized for better performance.

This topic also contains a list of the best practice checks for performance. For more

information, see the following topics:

 Database design and operations

 AOS tuning

 General programming

Design for Performance

Design your application for performance and functionality. Use a good data model, and use

the paradigms of MorphX (copy what has already been done). The features of MorphX are

built for optimized performance.

Keep in mind the following issues when you create your design.

Network setup:

 The network that connects the client to Application Object Server (AOS) is slow. It is

more efficient to make a small number of calls that transfer a large amount of data than

it is to make a large number of calls that transfer a small amount of data.

 The network that connects AOS to a database server is fast, but it is quicker to keep

calls in the AOS than to call over the network.

 Database servers are usually high-end and fast, but a single database server serves

everyone, and represents the traditional performance bottleneck in the application.

Execution of X++ code:

 All X++ statements are fast, but not as fast as compiled and machine-executable C++

code.

 Creation of objects is more time-consuming, but still fast.

 Database-related statements depend on the database design and load. Usually, selects

are faster than inserts, inserts are faster than deletes, and deletes are faster than

updates.

 Calls between tiers (client/server) are slow.

 Method calls are expensive. Try to reduce the number of calls. For example, do not call

the same method several times if you can store a value from the method and instead

use that value.

When you design, implement, and test for performance, use a database with a realistic

number of records (millions) in the various tables in the database, a realistic number of

concurrent users (hundreds), and a realistic configuration of network, clients, and servers.

139

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Best Practice Checks

Microsoft Dynamics AX conducts specific best practice checks for performance. For

information about how to set the options for best practice checks, see Best Practice Options.

The following table lists the best practice error and warning messages and how to fix the

errors.

Message Message type How to fix the error or
warning

Table is missing Clustered

Index

Warning Using clustered indexes to

organize your tables can lead

to large gains in performance,

but do so carefully. For more

information, see Clustered

Indexes.

Table is missing Primary

Index

Warning There are advantages and

disadvantages for using

indexes. For more

information, see Best

Practices for Indexes.

Extended Data Type is set to

be right justified, should be

set to left justified

Warning Set the extended data type to

be left-justified. For more

information about extended

data type best practices, see

Extended Data Types Best

Practice Checks.

RunBase classes should be

able to run on 'Called From'

(Ensure pack and unpack are

implemented correctly to

allow promptPrim to marshal

the class across tiers)

Warning The RunBase class is a

framework for classes that

need a dialog for user

interaction and that need the

dialog values to be saved per

user. For more information,

see RunBase Class.

See Also

Designing a Microsoft Dynamics AX Application

Best Practice Compiler Enforced Checks

Best Practices for Microsoft Dynamics AX Development

Performance Optimizations: AOS Tuning

"AOS tuning" is about minimizing the number of calls between the client and the server. The

amount of data transported per call is not as important as the number of calls.

Achieve the "select Discount"

Whenever a select statement is executed against a data source that is located on another

tier, the number of records returned has a certain minimum size (it may return more

records than requested). If more records are requested, a new call is performed, and

another batch of records are returned for further processing. This effect is referred to as the

"select discount", because a round trip to the server is not made for every record fetched,

but only for every batch of records.

The "select discount" can be compared to how an insert or an update always cost one call

per record.

140

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

If you know you only need one record, specify that by using the firstOnlyselect statement

qualifier.

Normal tables have the data source located on the server. Temporary tables have their data

source located at the tier where the code was running at the first call to insert.

Use Containers to Reduce Client/Server Calls

Sometimes you want to transport the values of a large number of variables, or the result of

lots of method calls from one tier to another. This costs a lot of client/server calls. The

solution can be to use a container holding all the values, transmitted in one call.

Many classes have pack/unpack methods that can be used in such operations.

See Also

Best Practices: Performance Optimizations

Performance Optimizations: General Programming

Performance Optimizations: Database Design and Operations

Performance Optimizations: Database Design and Operations

This topic describes some design techniques that can help to improve database

performance.

Caching

Set the table cache level to cache as many records as possible for the table.

Use the record view cache when the same set of records is going to be repeatedly selected.

You can also use your own local caching, in a simple buffer variable, in a record-sorted list

or in a temporary table.

Index Design

Index design is very important. Correct index definitions are crucial to a well-performing

application. Ensure that there are adequate indexes and that there is the correct number of

fields in each index.

It can be useful to add or remove some indexes on the individual installations, depending on

the amount and contents of their records.

Using clustered indexes to organize your tables can lead to large gains in performance, but

do so carefully. For more information, see Clustered Indexes.

Select Statements

 Use joins instead of multiple nested while selects.

 Use field lists where applicable.

 Use select/aggregate functions where applicable.

 Use delete_from (instead of while selectdelete()).

 Select from the cache where possible.

Transactions

 Make transactions as short and small as possible, to avoid deadlocks and large rollback

logs.

 Never wait for a user interaction inside a transaction.

 If several operations must be performed before data returns to a consistent state,

perform all the operations in one transaction.

 Avoid deadlocks. Explicitly select records to be updated in a specific order within the

table (preferably the order of the key), each time, throughout the application. Select

141

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

records for update from different tables in the same order, each time, throughout the

application.

Avoid Lengthy Locks on Commonly Used Records

 Use Optimistic Concurrency Control (OCC).

 Update locks on central, commonly used (updated) records that represent bottlenecks in

the application.

 Try to avoid updating commonly used records inside transactions.

 Structure the design so that you can use inserts instead of updates. Inserts do not lock

objects.

 Place the select statement for updates as close to the ttsCommit statement as possible, to

reduce the amount of time records are locked.

Do Not Write/Update if the Record Has Not Been Changed

The system routinely optimizes database updates by updating a record only if it has actually

been changed. If you can do that optimization yourself, it can spare some database

operations.

Use Joins in Forms

Use joins in forms, instead of using display methods that contain selects.

Using display methods with selects on grids on forms can be slow on thin AOS clients,

especially if they are not cached. A call has to be made from the client to the Application

Object Server (AOS) and from there to the database server. These calls are multiplied by

the number of visible lines in the grid.

If possible, rewrite the form to use a join statement between the data sources. There will be

only one call to the database when approximately 20 rows are shown in the grid. It is also

possible to filter, find, and sort on the joined fields.

Use the Form's Internal Cache

Whenever records are selected from the database and shown in a form, they are cached

internally in the form. You can access and use the cached information rather than re-

selecting the records.

Example

A form shows data from up to four tables that are related to the table on the first tab page,

each on a grid on a separate tab page. The related tab pages are hidden if there is no data

to show.

Tab pages can be hidden by selecting a record in the database with the same range as that

shown on the tab page. If no records are retrieved, the tab page is hidden (.visible(false)).

This results in two selects for the same data per tab page.

The hiding of the tab pages can be optimized to only one select per tab page by checking if

there is any data in the related internal cache, and then hiding the tab page if there is no

data. The actual check is performed by asking if the buffer related to the data source on the

tab page is true (with some records to show) or false.

See Also

Best Practices: Performance Optimizations

Performance Optimizations: General Programming

Performance Optimizations: AOS Tuning

Performance Optimizations: General Programming

This topic describes programming techniques that can help to improve performance, and

how to inform the user if there is a lengthy operation.

142

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Use Local Caching

You can improve performance by taking a value that is constantly calculated inside a loop

out of that loop, and placing it in a variable that is then used inside the loop.

For example, the following method was called from a body line in a report, and used many

times when the report was run. The isoCurrencyCode method is called on an Infolog object,

which is bound to the client. So when this report is run on the server, there are two client

calls per line.
display CurrencyCode currencyCode()
{
 return infolog.isoCurrencyCode()
 ? infolog.isoCurrencyCode()
 : CompanyInfo::find().currencyCode;
}

The previous code was changed so that a currencyCode variable was declared in the class

declaration, initialized (once) in the init method, and then used in the currencyCode method.

This is the code used in the init method.
public void init()
{
 super();
 ...
 currencyCode = infolog.isoCurrencyCode()
 ? infolog.isoCurrencyCode()
 : CompanyInfo::find().currencyCode;
}

This is the new currencyCode method. There are no longer any calls to the client.
display CurrencyCode currencyCode()
{
 return currencyCode;
}

Optimize the Addition of Elements to Containers

Use the += construct to add elements to a container. This construct is optimized by the

compiler and results in elements being added much faster than for a container = container +

newValue; construct. The difference in performance is particularly important for large

containers.

The following example shows the two different ways of adding elements to a container.
void containerExample

{

 container c1;

 int a,b;

 ;

 // The non-optimized way to add an element.

 c1 = c1 + a;

 // The optimized way to add an element.

 c1 += b;

}

Lengthy Operations

If a user is interacting with the UI and the operation takes longer than one second, use one

of these indicators:

 Use xInfo.startLengthyOperation to set the mouse cursor to idle.

 Use an hourglass to show that the operation is progressing.

 Use a progress bar to indicate progress.

See Also

Best Practices: Performance Optimizations

Performance Optimizations: AOS Tuning

143

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Performance Optimizations: Database Design and Operations

Swapping Arrays to Disk

When you declare an array, one of your options is to specify how many array items are to

be held in memory. The remaining array items are swapped to disk.

Note:

Use this option with caution, as it could lead to excessive disk swapping or excessive

memory usage.

A dynamic array is sized according to the largest index ever used in the array. For example,

if you use an index of 1000 in an array, the size of the array is set to 1000. If you then use

an index of 500, the array size remains 1000.

The general rules are:

 If you use all or nearly all entries in an array, set the memory option to a large number

or do not set the option at all.

 If you use few, non-consecutive entries in the array, set the memory option to a small

number, such as 1.

 If you use record IDs as indexes, set the memory option to 1. Record IDs are typically

very large integers. When you use them as indexes, the size of your dynamic arrays

grows unacceptably large.

For example:
MyTable myTable;
boolean foundRecord[,1];
;
while select myTable
 where myTable ...
{
 foundRecord[myTable.RecId] = true;
 ...
}

See Also

X++ Standards: Arrays

Design Guidelines for Cost-Efficient Upgrades

A Microsoft Dynamics AX application is typically upgraded a number of times during its

lifetime. Upgrades may be made to the standard application, or to customized parts of the

application. If the application is not designed according to some fundamental principles,

upgrading can be expensive and very time consuming.

This section of the SDK describes the relative cost of changing different types of application

objects, and describes which layers should be modified in different circumstances.

 Relative Upgrade Costs

 Best Practices for Application Layers

Also refer to Designing a Microsoft Dynamics AX Application.

Note:

For information about the upgrade process, refer to the Microsoft Dynamics AX

Implementation Guide.

Relative Upgrade Costs

The following table provides an overview of the relative upgrade cost for a change to an

existing Application object.

The upgrade cost is not an absolute value. This table is meant to give only an approximation

of the work involved.

144

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Application Object Type Cost if functionality added Cost if functionality changed

Form High High

Report[1] High High

Report Template Low Low

Query Medium Medium

Menu Medium Medium

Table collection Medium Medium

Table Low Medium

Class Low Medium

Extended data Type Medium Medium

Base Enum Medium Medium

Menu Items Medium Medium

[1] Modifications to a report can be done by adding a new design. In this case, the upgrade

cost is considered Medium.

If new functionality is added to a Microsoft Dynamics AX application as new stand-alone

application objects, the cost of upgrading is likely to be much lower than if the functionality

was created by modifying existing objects.

See Also

Design Guidelines for Cost-Efficient Upgrades

Best Practices for Application Layers

This topic describes best practices and upgrade procedures for partners and customers who

are working with archived modules.

Customer (Installation) Layers

USR

The customer (or the customer's partner) can make customizations in the USR layer that

are unique to the customer's installation.

ID: 50001-60000

CUS

The CUS layer contains application functionality that was either brought or archived as a

standard package by a customer.

The customer (or the customer's partner) needs to import the package to the CUS layer.

As new versions of the package are developed and distributed, the customer must import

the new version in the CUS layer without overwriting the modifications to the package that

might have been made in the USR layer.

Modifications in the USR layer based on application objects in the CUS layer must be

updated after the upgrade.

Solutions like this must be supplied to the customers as export files, preferably as an

exported project.

ID: 40001-50000

Partner Layers

VAR

The VAR layer contains a partner's modifications to the set of solutions contained in the BUS

layer, forming the partner's own all-inclusive solution for one or more customers.

When new versions of the archived standard solutions arrive, they must be imported in the

BUS layer, and an upgrade of the VAR layer must be performed.

145

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

The upgraded VAR layer must then be distributed to the customers with that particular VAR

layer configuration, and the customer's applications must be upgraded.

The partner must supply the customer with the axvar.aod file.

The partner must keep a catalog of the customer's VAR/BUS configurations to update them

correctly.

ID: 30001-40000

BUS

The BUS layer contains a solution created by a partner for one or more customers.

The layer can also contain standard solutions that a partner has archived from other

partners.

The partner must import the archived solutions to produce the BUS layer. They must also

supply the customer with the axbus.aod file.

The partner must keep a copy of the individual axbus.aod files to import new versions of the

archived solutions into the existing files, maintaining the internal IDs.

Partners must supply BUS layer standard solutions to other partners as export files,

preferably as an exported project.

ID: 20001-30000

Standard Layers

SL1, SL2, and SL3

The SL1, SL2, and SL3 layers are managed by distributors and are used for vertical partner

solutions.

Solutions are protected by configuration keys and license codes.

Note:

The LicenseCode property can only be set or changed on Microsoft Dynamics AX

configuration keys in the Microsoft layers. You cannot use a non-Microsoft layer

containing a Microsoft Dynamics AX configuration key.

ID: 1-20000

HFX

HFX is the application layer used for on-demand hot fixes. A hot fix is a single code package

composed of one or more files used to address a problem in the product. Using this layer,

developers can apply a secure import of .xpo content without interfering with the existing

layers or the need to perform a full upgrade. When a roll-up or service pack containing

these hot fixes is subsequently released and installed on the system, the HFX layer is

automatically emptied.

Solutions are protected by configuration keys and license codes.

Note:

The LicenseCode property can only be set or changed on Microsoft Dynamics AX

configuration keys in the Microsoft layers. You cannot use a non-Microsoft layer

containing a Microsoft Dynamics AX configuration key.

ID: 1-20000

GLS

The GLS layer contains functionality developed by Global Solution Partners and is assembled

and supplied as the axGLS.aod file.

Solutions are protected by configuration keys and license codes.

Note:

The LicenseCode property can only be set or changed on Microsoft Dynamics AX

configuration keys in the Microsoft layers. You cannot use a non-Microsoft layer

containing a Microsoft Dynamics AX configuration key.

146

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

ID: 1-20000

Labels are in the axGLS*.ald file.

Each solution partner has an individual range of label IDs.

SYS

The SYS layer is the standard application. This layer contains functionality developed and

supplied as the default axSYS.aod file.

ID: 1-20000

Labels are in the axSYS*.ald file.

Modified Layers

You always log on to Microsoft Dynamics AX on the current layer. You usually log on to the

outermost layer in the installation that you are working on. For certain situations, however,

logons are to a different layer.

When you create new application objects, they are placed in the current layer. For example,

if you log on to the CUS layer, new application objects are created in the CUS layer.

When you edit application objects, they are placed in the highest layer they are represented

in, but not lower than the current layer:

 If you log on to the USR layer and modify any existing application object, the modified

application objects are created in the USR layer.

 If you log on to the CUS layer and modify an existing application object from the CUS

layer, the modified application objects are replaced in the CUS layer.

 If you log on to the CUS layer and modify an existing application object from the USR

layer, the modified application objects are replaced in the USR layer.

 If you log on to the CUS layer and modify an existing application object from the GLS

layer, the modified application objects are created in the CUS layer.

When you import application objects, they are placed directly in the current layer:

 If you log on to the USR layer and import some application objects, all the imported

application objects are placed in the USR layer:

 Existing application objects in the USR layer are lost and replaced with the imported

ones.

 Existing application objects in the CUS layer (or any lower) are overridden with the

imported ones in the USR layer.

 New application objects are placed in the USR layer.

 If you log on to the CUS layer and import some application objects, all the imported

application objects are placed in the CUS layer:

 Existing application objects in the USR layer are unchanged, but are overridden with the

imported ones from the CUS layer. (The USR layer has to be updated.)

 Existing application objects in the CUS layer are lost and replaced with the imported

ones.

 Existing application objects in the GLS layer (or any layer lower than CUS) are

overridden with the imported objects in the CUS layer.

 New application objects are placed in the CUS layer.

APIs in the Standard Application

The internal APIs (Application Programming Interfaces) in the application must be used

when interfacing to their part of the application.

The application must provide APIs for accessing and protecting the functionality in the

application that might be of use in other modules.

Characteristics of an internal API are as follows:

 It is class-based.

147

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 The user of the API should only know what the API does or is used for. They shouldn't

have to know how the API is implemented.

The purpose of the API can be the following:

 To provide a simple interface to some complex structures.

 To provide a well-defined interface to some widely used functionality.

 To protect the underlying database structures from incorrect use.

Internal APIs

The following internal APIs exist in the standard application.

Ledger

 LedgerVoucher

 LedgerCoverage (Cash-flow forecast)

Customer

 CustVoucher

Vendor

 VendVoucher

Inventory

 InventUpdate/InventMovement

 BOMReportFinish

 BOMRouteCopyJob

Sales

 SalesAutoCreate

Purchase

 PurchAutoCreate

Project

 ProjPost/ProjTrans

Number Sequences

 NumberSeq

System

 SysDataImport, SysDataExport

 BatchInfo

Ax<table> Classes

Following is a list of all the Ax<table> classes. These classes should be placed under their

module and not Ax<table> classes.

 AxInternalBase

 AxAddress

 AxCommissionSalesRep

 AxCompanyInfo

 AxContactPerson

148

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 AxCustInvoiceJour

 AxCustInvoiceTrans

 AxCustTable

 AxDocuRef

 AxECPustSignup

 AxEmplTable

 AxInventDim

 AxInventItemLocation

 AxInventTable

 AxInventTableModule

 AxMarkupTrans

 AxPriceDiscTable

 AxProjActivity

 AxProjCategory

 AxProjGroup

 AxPurchLine

 AxPurchTable

 AxSalesLine

 AxSalesTable

 AxVendPurchOrderJour

 AxVendPurchOrderTrans

 AxVendTable

Frameworks Introduction

Frameworks are collections of design patterns, interfaces, actual code, and so on. They

make up a system that provides some support for you as a programmer. It is best practice

to use and exploit the existing frameworks and subsystems rather than create something

similar yourself.

This topic contains short descriptions of some of the frameworks, subsystems, and features

in Microsoft Dynamics AX.

Address System

Addresses are uniformly handled by the Address subsystem.

BatchJournal Framework

The BatchJournal Framework enables you to run a group of tasks that have been created by

using the RunBase framework. (There are individual tts transaction controls for each task.)

Consistency Check Framework—Check and Fix

The Consistency Check Framework helps validate the consistency of the data in the

production database and helps fix the inconsistencies that it finds.

The framework consists of classes with names ending in "ConsistencyCheck." For example,

InventConsistencyCheck.

Dimension

Use the How to: Add Dimensions subsystem to work with financial dimensions. Use the

InventDim subsystem to work with inventory dimensions.

149

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Document Management System

The document management system is automatically available everywhere in Microsoft

Dynamics AX. Text notes and documents of any type and size can be attached to any record

in Microsoft Dynamics AX.

Note fields should not be placed on your own tables. The document management system's

text notes are used for that.

Note If documents attached to a record are stored on a file share rather than in the

database in Microsoft Dynamics AX, you must ensure that the correct access levels have

been set.

Infolog

Information and messages to the user are placed in the Infolog. It also contains contextual

information and supporting Help and actions.

Number Sequence

Create a number sequence for a new module by using the Number Sequence Framework.

OLAP

Your application must support OLAP possibilities. To do this, use the (BAS* classes).

Operation progress

Inform the user that a process will take some time by using the How to: Create Progress

Indicators (SysOperationProgress).

ReleaseUpdate

The data model in Microsoft Dynamics AX has changed from that in Microsoft Axapta 3 0.

Use the ReleaseUpdate framework to update the data in your customers' database.

RunBase

Use the RunBase Framework to execute tasks that cannot be executed in batch.

The framework provides you with dialogs, users last values, query dialogs, and progress

bars. It also provides a unified user and programmer experience.

It is best practice to make it possible to execute the jobs in Batch.

RunbaseBatch

Use RunBaseBatch to execute tasks and reports in batches. This enables the user to work

with the next task in Microsoft Dynamics AX instead of waiting for another task to finish.

All tasks that cannot be executed in batch should be implemented with the RunBase

Framework.

RunbaseReportStd

Use the RunBaseReportStd framework to implement all reports.

RunBaseMultiParm

The RunbaseMultiParm framework does the following:

 Enables you to run one or many updates in one job

 Provides a job history

 Provides more straightforward parameter handling

The frameworks use parameter tables that are specifically designed for a particular task. For

example, ProdParmBOMCalc, which is used with the ProdMultiBOMCalc class.

150

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Instead of packing many parameters, only a parmId is packed. It identifies one or many

records in the parameter table.

The parameters needed are created as fields in the parameter table. The dialog is a form in

the AOT, showing a grid by using the parameter table instead of a traditional dialog form.

For each parameter record, the actual RunbaseMultiParm class runs a specific UpdateBase class.

There will typically be an UpdateBase class for each RunbaseMultiParm class.

TransactionLog Subsystem

The TransactionLog subsystem is used to offload the transaction details, such as

CreatedDate and CreatedBy, from the transaction tables and place them in a central

transaction header table. All transactions across the application share a common entry in

the transaction header table, and they are related to it.

Web Applications (WebApp)

Create applications for the Web by using the Web Application Framework for Microsoft

Dynamics AX. For more information, see Enterprise Portal for Microsoft Dynamics AX.

Wizard

Create wizards by using the Wizard Wizard, and the Wizard framework.

See Also

Microsoft Dynamics AX Class Design Patterns

Number Sequence Framework

This topic describes how to implement the number sequence framework for a new module in

Microsoft Dynamics AX. The topic will show how some number sequences could be

implemented for the Fleet Management (FM) sample module. (Some of the following steps

might be irrelevant if they have been previously performed for other purposes in your new

Microsoft Dynamics AX module.)

Creating a Parameter Table and a Number Sequence Reference Class

The first step to implementing number sequences for a new module is to create a parameter

table and a number sequence reference class.
1. Create a parameter table for the new module: MyModuleParameters. For the Fleet Management

module, this table is named FMParameters. The table must, at a minimum, contain a Key field and a

find method. The delete and update methods must be overridden. These methods can be copied from

one of the other parameter tables, such as BOMParameters.

2. Create an enumerated value that represents all of the number sequences for the module by

adding a new element to the NumberSeqModule base enum. For the Fleet Management module, the FM

element was added to the base enum.

Note:

Configuration keys are used to detect the active number sequence references in your

Microsoft Dynamics AX installation. If the configuration key is not enabled, the modules

number sequence references are not displayed in the general References form. The user

cannot see references from modules that are not enabled.
3. Create a new number sequence reference class named NumberSeqReference_MyModule. This class

must extend the NumberSeqReference class. For the Fleet Management module, this class is named

NumberSeqReference_FM.

4. Add the numberSeqModule method to the new number sequence reference class. This method must

return the element for your module from the NumberSeqModule base enum. The following code shows

how this is done for the Fleet Management module.

151

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

public static client server NumberSeqModule numberSeqModule()

{

 return NumberSeqModule::FM;

}

5. Implement the numberSeqModule and numberSeqReference methods for the parameters table.

Copy these methods from one of the other parameter tables such as BOMParameters, and

then change the names that are found in the method. Change the return value of the

numberSeqModule method so that it references the number sequence class for your module.

For example, the numberSeqModule method from the FMParameters table returns

NumberSeqReference_FM::numberSeqModule. The numberSeqModule method of the NumberSeqReference_FM

class returns NumberSeqModule::FM (the FM element of NumberSeqModule).
6. Add MyModuleParameters::find() as a new line in the selectParameters method of the Company

class. The following example shows the line that was added for the Fleet Management module.

FMParameters::find();

7. Create a form to display the new parameter table.

It is important that the functionality of number sequence references is copied exactly from

one of the other parameter forms (for example, CustParameters). Remember to change the

names of the called methods.
8. In the NumberSeqReference class, add a new line to the construct method—copy one of the existing

lines, and then change the name of the class. The following example shows the line that was added for

the Fleet Management module.

case(NumberSeqReference_FM::numberSeqModule()) : return new NumberSeqReference_FM(_module);

9. In the NumberSeqReference class, add a new line to the moduleList method—copy one of the

existing lines, and then change the name to reference your number sequence class. The following

example shows the line that was added for the Fleet Management module.

moduleList += NumberSeqReference_FM::numberSeqModule();

The new number sequence framework is now established. The Number sequences tab

should display the "No setup required" message.

Making Number Sequence References

Next, you will make number sequence references for the number sequences you are

creating for your new module.
1. In your number sequence reference class, override the loadModule method.

2. In this new method, specify the characteristics of each number sequence reference you need in

the new module. For example, the following code is from the loadModule method of the

NumberSeqReference_FM class. It defines two number sequences used by the Fleet Management module.

protected void loadModule()

{

 NumberSequenceReference numRef;

 ;

 // Setup VehicleNum ID

 numRef.DataTypeId = typeId2ExtendedTypeId(typeid(VehicleNum));

 numRef.ReferenceHelp = "Unique key for Fleet Management vehicles";

 numRef.WizardContinuous = false;

 numRef.WizardManual = NoYes::Yes;

 numRef.WizardAllowChangeDown = NoYes::No;

 numRef.WizardAllowChangeUp = NoYes::No;

 numRef.SortField = 1;

 this.create(numRef);

152

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

 // Setup TripNum ID

 numRef.DataTypeId = typeId2ExtendedTypeId(typeid(TripNum));

 numRef.ReferenceHelp = "Unique key for trips";

 numRef.WizardContinuous = false;

 numRef.WizardManual = NoYes::Yes;

 numRef.WizardAllowChangeDown = NoYes::No;

 numRef.WizardAllowChangeUp = NoYes::No;

 numRef.SortField = 2;

 this.create(numRef);

}

Tip:

For details about how to create a reference, see the comments written above the code

for the NumberSeqReference.loadModule method.

After creating your references, the system automatically detects them when opening the

parameter form. They should now be visible in the grid on the Number sequences tab.

Accessing Your New References

For each reference specified in NumberSeqReferenceMyModule.loadModule, you must create a

static method on your parameter table. Assuming that you have specified a reference for

the MyDataType data type, create the MyModuleParameters::numRefMyDataType method.
1. Copy a numRef method from one of the other parameter tables.

2. Change the name of the method to numRefMyDataType.

3. Add code that will return a number sequence reference object for that specific data type. For

example, the following method retrieves the number sequence reference object that is used for the

TripNum field.

server static NumberSequenceReference numRefTripNum()

{

 return NumberSeqReference::findReference(typeId2ExtendedTypeId(typeid(TripNum)));

}

Using Number Sequences in an Application

To use the number sequence for a form in Microsoft Dynamics AX or in Enterprise Portal,

you will typically add code to the data source for the form or data set. You can also retrieve

a number sequence value directly in code. For example, the following example retrieves the

next available vehicle number from the number sequence used for the VehicleNum field and

displays it in the Infolog.
Info(NumberSeq::newGetNum(FMParameters::numRefVehicleNum()).num());

 Forms

To use a number sequence for a form in Microsoft Dynamics AX, follow these steps.
1. In the classDeclaration method of the form that will be accessing data, add a variable declaration

for the number sequence handler. The following example shows the variable definition for a number

sequence handler.

public class FormRun extends ObjectRun

{

 NumberSeqFormHandler numberSeqFormHandler;

}

153

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

2. Add the NumberSeqFormHandler method to the form. The code in this method will create an instance

of the number sequence form handler and return it. The following example shows the code that

returns the number sequence form handler for the Trips form of the Fleet Management sample

module.

NumberSeqFormHandler numberSeqFormHandler()

{

 if (!numberSeqFormHandler)

 {

 numberSeqFormHandler = NumberSeqFormHandler::newForm(

 FMTrips::numRefFMTrips().NumberSequence,

 element,

 FMTrips_DS,

 fieldnum(FMTrips, TripNum));

 }

 return numberSeqFormHandler;

}

3. Add create, delete, and write methods to the data source of the table that contains the field for

which the number sequence is being used. The following code examples show these methods that are

added to the data source for the FMTrips table to support the number sequence for the TripNum field.

public void create(boolean _append = false)

{

 element.numberSeqFormHandler().formMethodDataSourceCreatePre();

 super(_append);

 element.numberSeqFormHandler().formMethodDataSourceCreate();

}

public void delete()

{

 element.numberSeqFormHandler().formMethodDataSourceDelete();

 super();

}

public void write()

{

 super();

 element.numberSeqFormHandler().formMethodDataSourceWrite();

}

Enterprise Portal

To use a number sequence for a form in Enterprise Portal, follow these steps.
1. In the classDeclaration method of the data set that will be accessing data, add a variable

declaration for the number sequence handler. The following example shows the variable definition for

a number sequence handler.

public class DatSetRun extends ObjectRun

{

 NumberSeqFormHandler numberSeqFormHandler;

}

2. Add the NumberSeqFormHandler method to the data set. The code in this method will create an

instance of the number sequence form handler and return it. The following example shows the code

that returns the number sequence form handler for the FMTripAddEdit data set of the Fleet

Management sample module.

154

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

NumberSeqFormHandler numberSeqFormHandler()

{

 if (!numberSeqFormHandler)

 {

 numberSeqFormHandler = NumberSeqFormHandler::newForm(

 FMTrips::numRefFMTrips().NumberSequence,

 element,

 FMTrips_DS,

 fieldnum(FMTrips, TripNum));

 }

 return numberSeqFormHandler;

}

3. Add create, delete, and write methods to the data source for the data set that contains the field

for which the number sequence is being used. The following code examples show these methods that

are added to the data source for the FMTrips table to support the number sequence for the TripNum

field.

public void create(boolean _append = false)

{

 element.numberSeqFormHandler().formMethodDataSourceCreatePre();

 super(_append);

 element.numberSeqFormHandler().formMethodDataSourceCreate();

}

public void delete()

{

 element.numberSeqFormHandler().formMethodDataSourceDelete();

 super();

}

public void write()

{

 element.numberSeqFormHandler().formMethodDataSourceWrite();

 super();

}

RunBase Framework

The RunBase framework provides a standardized approach to creating processes and batch

jobs in Microsoft Dynamics AX. The framework must be used for every job-style function in

the application.

The framework is implemented by the RunBase application class and supplies many features,

which include the following:

 Query

 Dialog, with persistence of the last values entered by the user

 Validate

 Batch execution for users to schedule jobs. This functionality uses the RunBaseBatch

Class class) and the pack and unpack methods with versioning.

 Progress bar

 Run

 Client/server-optimized

155

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

Following are descriptions of some of the most important RunBase methods.

new Method

Always call super() in the new method.

The new method must not be too slow for your needs (it is periodically called for

administrative purposes).

description Method

You must create a static description method that returns a class description—the class's role

in the UI.

The description method must have the RunAs property set to Called or the equivalent

behavior. If the class is defined as client or server, define the method as client server.

For example:
client server static ClassDescription description()
{
 return "@SYS54106";
}

run Method

The RunBase.run method is the central method of the class. The job is done in the run

method.

Skeleton:
void run()

{

 // Local declarations.

 try

 {

 this.progressInit

 ttsBegin;

 // Reset the variables that were changed in the transaction.

 ...

 // Do the job.

 while select forUpdate myTrans...

 {

 progress.incCount();

 progress.setText

 ...

 ...

 ttsCommit;

 }

 catch (Exception::Deadlock)

 {

 retry;

 }

}

pack and unpack Methods

For information about the pack and unpack methods, see the pack-unpack design pattern.

RunBaseReport.initQuery Method

Place code that modifies the RunBase query in the RunBaseReport.initQuery Method

method. The RunBaseReport.initQueryRun Method method calls initQuery.

156

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

If the query in a RunbaseReport depends on values from the dialog, call this.initQueryRun after

the data is moved from the fields to the variables.

Example
private boolean getFromDialog()

{

 ;

 perDate = dialogDate.value();

 this.initQueryRun();

 return super();

}

The initQueryRun method in the previous code calls initQuery.

private Query initQuery()

{

 query query = super();

 queryBuildRange qbr;

 ;

 qbr = query.dataSourceTable(

 tableNum(InventTrans)).findRange(

 fieldNum(InventTrans,DatePhysical));

 if (!qbr)

 {

 qbr = query.dataSourceTable(

 tableNum(InventTrans)).addRange(

 fieldNum(InventTrans,DatePhysical));

 }

 qbr.value(SySQuery::range(prevYr(PerDate),PerDate));

 qbr = query.dataSourceTable(

 tableNum(InventTrans)).findRange(

 fieldNum(InventTrans,DateFinancial));

 if (!qbr)

 {

 qbr = query.dataSourceTable(

 tableNum(InventTrans)).addRange(

 fieldNum(InventTrans,dateFinancial));

 }

 qbr.value(SysQuery::value(perDate+1)

 + '..' + ',' + sysQuery::valueEmptyString());

 return query;

}

Best Practices: Application Integration Framework

Microsoft Dynamics AX provides a framework called Application Integration Framework (AIF)

to integrate with an external application. You can use AIF to send and receive XML

documents that represent business objects, such as a customer or vendor. To process these

documents, Microsoft Dynamics AX must be able to parse and generate XML. AIF provides

automatically generated classes referred to as data objects to implement XML serialization

and de-serialization. Data objects can be defined from multiple artifacts. For more

information, see Application Integration Framework Overview.

Microsoft Dynamics AX conducts a best practice check to verify that the data object is

synchronized with the underlying artifacts that were used to define the data object. The

157

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

best practice check is for missing or extra methods in the data object. For information about

how to set the options for best practice checks, see Best Practice Options.

Best Practice Checks

The following table lists the best practice error messages and how to fix the errors.

Message Message type How to fix the error or
warning

Data object class %1 is

missing method %2.

Error Use the Update document

service form to synchronize

the data objects with the

underlying schema.

Data object class %1 has

extra method %2.

Error Use the Update document

service form to synchronize

the data objects with the

underlying schema.

Long-Running BP Checks

Best practices checks on certain AIF objects such as Axd<Document> classes, Ax<Table>

classes, and Axd queries can take a very long time. If best practices checks are enabled as

part of compiling, then compiling these classes can also take a long time. In addition, using

the AIF Document Service Wizard can take longer than expected because of the best

practice checking that it performs.

When you encounter a long-running best practices check, you can:

 Allow the best practices check to finish.

 Do not run the best practices check.

 Do not compile with best practices checks on.

 Disable the best practices rule for data objects in the Best Practice parameters form.

To open this form, go to Tools > Options and click Best Practices. In the best practices

tree, expand the Application Integration Framework node, and then clear the Entity

and Data Objects Classes field.

See Also

Best Practices for Microsoft Dynamics AX Development

Best Practice Options

158

BEST PRACTICES FOR MICROSOFT DYNAMICS AX 2009 DEVELOPMENT

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the

date of publication. Because Microsoft must respond to changing market conditions, this document should not be interpreted to be a

commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of

publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS

TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of

this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means

(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of

Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject

matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this

document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, the Microsoft Dynamics Logo, [list all other trademarked MS product names cited in the document, in alphabetical order],

Microsoft Dynamics, SharePoint, Visual Basic, Visual Studio, Windows, and Windows Server are either registered trademarks or

trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the

date of publication. Because Microsoft must respond to changing market conditions, this document should not be interpreted to be a

commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of

publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS

TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of

this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means

(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of

Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject

matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this

document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, the Microsoft Dynamics Logo, [list all other trademarked MS product names cited in the document, in alphabetical order],

Microsoft Dynamics, SharePoint, Visual Basic, Visual Studio, Windows, and Windows Server are either registered trademarks or

trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

